DOI QR코드

DOI QR Code

Effects of nanomaterials on hydration reaction, microstructure and mechanical characteristics of cementitious nanocomposites: A review

  • Received : 2020.04.29
  • Accepted : 2020.06.30
  • Published : 2020.06.30

Abstract

Application of nanomaterials to cementitious composites has been attempted with the rapid development of nanotechnology since the 1990s. Various nanomaterials such as carbon nanotube, graphene, nano-SiO2, nano-TiO2, nano-Al2O3, nano-Clay, and nano-Magnetite have been applied to cementitious composites to improve the mechanical properties and the durability, and to impart a variety of functionality. In-depth information on the effect of nanomaterials on the hydration reaction, the microstructure, and the mechanical properties of cementitious nanocomposites is provided in the present study. Specifically, this paper mostly deals with the previous studies on the heat evolution characteristics of cementitious nanomaterials at an early age of curing, and the pore and the compressive strength characteristics of cementitious nanocomposites. Furthermore, the effect of nanomaterials on the cementitious nanocomposites was systematically discussed with the reviews.

Keywords

References

  1. Amin, M. S., El-Gamal, S. M. A., Hashem, F. S. (2013), "Effect of addition of nano-magnetite on the hydration characteristics of hardened Portland cement and high slag cement pastes." Journal of thermal analysis and calorimetry, Vol. 112, No. 3, pp.1253-1259. https://doi.org/10.1007/s10973-012-2663-1
  2. Barbhuiya, S., Mukherjee, S., Nikraz, H. (2014), "Effects of nano-Al2O3 on early-age microstructural properties of cement paste." Construction and Building Materials, Vol. 52, pp.189-193. https://doi.org/10.1016/j.conbuildmat.2013.11.010
  3. Brown, P. W. (1999), "Hydration behavior of calcium phosphates is analogous to hydration behavior of calcium silicates."Cement and Concrete Research, Vol. 29, No. 8, pp.1167-1171. https://doi.org/10.1016/S0008-8846(99)00051-4
  4. Cai, J., Lv, C., Watanabe, A. (2016, August), "Laser direct writing micro-supercapacitors from graphene oxide films." In 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO)"pp.315-317. IEEE.
  5. Chen, J., Kou, S. C., Poon, C. S. (2012), "Hydration and properties of nano-TiO2 blended cement composites." Cement and Concrete Composites, Vol. 34, No. 5, pp.642-649. https://doi.org/10.1016/j.cemconcomp.2012.02.009
  6. Chen, S. J., Collins, F. G., MacLeod, A. J. N., Pan, Z., Duan, W. H., Wang, C. M. (2011), "Carbon nanotube-cement composites: A retrospect." The IES journal part a: Civil & structural engineering, Vol. 4, No. 4, pp.254-265. https://doi.org/10.1080/19373260.2011.615474
  7. De Souza, T. C., Pinto, G., Cruz, V. S., Moura, M., Ladeira, L. O., Calixto, J. M. (2020), "Evaluation of the rheological behavior, hydration process, and mechanical strength of Portland cement pastes produced with carbon nanotubes synthesized directly on clinker." Construction and Building Materials, Vol. 248, pp.118686. https://doi.org/10.1016/j.conbuildmat.2020.118686
  8. Dong, H., Gao, P., Ye, G. (2017), "Characterization and comparison of capillary pore structures of digital cement pastes." Materials and Structures, Vol. 50, No. 2, pp.154. https://doi.org/10.1617/s11527-017-1023-9
  9. Du, H., Dai Pang, S. (2015), "Enhancement of barrier properties of cement mortar with graphene nanoplatelet." Cement and Concrete Research, Vol. 76, pp.10-19. https://doi.org/10.1016/j.cemconres.2015.05.007
  10. Famy, C., Brough, A. R., Taylor, H. F. W. (2003). The CSH gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on CSH, AFm and AFt phase compositions. Cement and Concrete Research, 33(9), 1389-1398. https://doi.org/10.1016/S0008-8846(03)00064-4
  11. Ghazizadeh, S., Duffour, P., Skipper, N. T., Bai, Y. (2018), "Understanding the behaviour of graphene oxide in Portland cement paste." Cement and Concrete Research, Vol. 111, pp.169-182. https://doi.org/10.1016/j.cemconres.2018.05.016
  12. Kang, S. T., Seo, J. Y., Park, S. H. (2015), "The characteristics of CNT/cement composites with acid-treated MWCNTs." Advances in Materials Science and Engineering, 2015.
  13. Khaloo, A., Mobini, M. H., Hosseini, P. (2016), "Influence of different types of nano-SiO2 particles on properties of high-performance concrete." Construction and Building Materials, Vol. 113, pp.188-201. https://doi.org/10.1016/j.conbuildmat.2016.03.041
  14. Hou, D., Lu, Z., Li, X., Ma, H., Li, Z. (2017), "Reactive molecular dynamics and experimental study of graphene-cement composites: Structure, dynamics and reinforcement mechanisms." Carbon, Vol. 115, pp.188-208. https://doi.org/10.1016/j.carbon.2017.01.013
  15. Hu, M., Guo, J., Fan, J., Chen, D. (2019), "Dispersion of triethanolamine - functionalized graphene oxide (TEA-GO) in pore solution and its influence on hydration, mechanical behavior of cement composite." Construction and Building Materials, Vol. 216, pp.128-136. https://doi.org/10.1016/j.conbuildmat.2019.04.180
  16. Huanhai, Z., Xuequan, W., Zhongzi, X., Mingshu, T. (1993), "Kinetic study on hydration of alkali-activated slag." Cement and Concrete Research, Vol. 23, No. 6, pp.1253-1258. https://doi.org/10.1016/0008-8846(93)90062-E
  17. Jing, G., Wu, J., Lei, T., Wang, S., Strokova, V., Nelyubova, V., Ye, Z. (2020), "From graphene oxide to reduced graphene oxide: Enhanced hydration and compressive strength of cement composites." Construction and Building Materials, Vol. 248, pp.118699. https://doi.org/10.1016/j.conbuildmat.2020.118699
  18. Jo, B. W., Kim, C. H., Tae, G. H., Park, J. B. (2007), "Characteristics of cement mortar with nano-SiO2 particles." Construction and building materials, Vol. 21, No. 6, pp.1351-1355. https://doi.org/10.1016/j.conbuildmat.2005.12.020
  19. Kim, G. M., Naeem, F., Kim, H. K., Lee, H. K. (2016a), "Heating and heat-dependent mechanical characteristics of CNT-embedded cementitious composites." Composite Structures, Vol. 136, pp.162-170. https://doi.org/10.1016/j.compstruct.2015.10.010
  20. Kim, G. M., Yang, B. J., Ryu, G. U., Lee, H. K. (2016b), "The electrically conductive carbon nanotube (CNT)/cement composites for accelerated curing and thermal cracking reduction." Composite Structures, Vol. 158, pp.20-29. https://doi.org/10.1016/j.compstruct.2016.09.014
  21. Kim, G. M., Khalid, H. R., Kim, H. J., Lee, H. K. (2017), "Alkali activated slag pastes with surface-modified blast furnace slag." Cement and Concrete Composites, Vol. 76, pp.39-47. https://doi.org/10.1016/j.cemconcomp.2016.11.009
  22. Kim, G. M., Yoon, H. N., Lee, H. K. (2018), "Autogenous shrinkage and electrical characteristics of cement pastes and mortars with carbon nanotube and carbon fiber." Construction and Building Materials, Vol. 177, pp.428-435. https://doi.org/10.1016/j.conbuildmat.2018.05.127
  23. Kim, G. M., Nam, I. W., Yang, B., Yoon, H. N., Lee, H. K., Park, S. (2019), "Carbon nanotube (CNT) incorporated cementitious composites for functional construction materials: The state of the art." Composite Structures, pp.111244.
  24. Lee, B. Y., Kurtis, K. E. (2010), "Influence of TiO2 nanoparticles on early C3S hydration." Journal of the American Ceramic Society, Vol. 93, No. 10, pp.3399-3405. https://doi.org/10.1111/j.1551-2916.2010.03868.x
  25. Li, W., Li, X., Chen, S. J., Liu, Y. M., Duan, W. H., Shah, S. P. (2017), "Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste." Construction and Building Materials, Vol. 136, pp.506-514. https://doi.org/10.1016/j.conbuildmat.2017.01.066
  26. Liu, M., Xiao, H., Liu, R., Liu, J. (2018), Dispersion characteristics of various contents of nano‐TiO2 and its effect on the properties of cement‐based composite." Structural Concrete, Vol.. 19, No. 5, pp.1301-1308. https://doi.org/10.1002/suco.201800110
  27. Morsy, M. S., Alsayed, S. H., Aqel, M. (2010), "Effect of nano-clay on mechanical properties and microstructure of ordinary Portland cement mortar." International Journal of Civil & Environmental Engineering IJCEE-IJENS, Vol 10, No. 1, pp.23-27.
  28. Nochaiya, T., Chaipanich, A. (2011), "Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials." Applied Surface Science, Vol. 257, No. 6, pp.1941-1945. https://doi.org/10.1016/j.apsusc.2010.09.030
  29. Pan, Z., He, L., Qiu, L., Korayem, A. H., Li, G., Zhu, J. W., Wang, M. C. (2015), "Mechanical properties and microstructure of a graphene oxide-cement composite." Cement and Concrete Composites, Vol. 58, pp.140-147. https://doi.org/10.1016/j.cemconcomp.2015.02.001
  30. Pang, X., Boul, P. J., Cuello Jimenez, W. (2014), "Nanosilicas as accelerators in oilwell cementing at low temperatures." SPE Drilling & Completion, Vol. 29, No. 1, pp.98-105. https://doi.org/10.2118/168037-pa
  31. Qing, Y., Zenan, Z., Deyu, K., Rongshen, C. (2007), "Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume." Construction and building materials, Vol. 21, No. 3, pp.539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001
  32. Quercia, G., Brouwers, H. J. H., Garnier, A., Luke, K. (2016), "Influence of olivine nano-silica on hydration and performance of oil-well cement slurries." Materials & Design, Vol 96, pp.162-170. https://doi.org/10.1016/j.matdes.2016.02.001
  33. Rong, Z., Sun, W., Xiao, H., Jiang, G. (2015), "Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites." Cement and Concrete Composites, Vol. 56, pp.25-31. https://doi.org/10.1016/j.cemconcomp.2014.11.001
  34. Shi, C., Day, R. L. (1995), "A calorimetric study of early hydration of alkali-slag cements." Cement and concrete Research, Vol. 25, No. 6, pp.1333-1346. https://doi.org/10.1016/0008-8846(95)00126-W
  35. Senff, L., Labrincha, J. A., Ferreira, V. M., Hotza, D., Repette, W. L. (2009), "Effect of nano-silica on rheology and fresh properties of cement pastes and mortars." Construction and Building Materials, Vol. 23, No. 7, pp.2487-2491. https://doi.org/10.1016/j.conbuildmat.2009.02.005
  36. Tafesse, M., Kim, H. K. (2019), "The role of carbon nanotube on hydration kinetics and shrinkage of cement composite." Composites Part B: Engineering, Vol. 169, pp.55-64. https://doi.org/10.1016/j.compositesb.2019.04.004
  37. Wang, L., Zheng, D., Zhang, S., Cui, H., Li, D. (2016), "Effect of nano-SiO2 on the hydration and microstructure of Portland cement." Nanomaterials, Vol. 6, No. 12, pp.241. https://doi.org/10.3390/nano6120241
  38. Wang, Q., Wang, J., Lu, C. X., Liu, B. W., Zhang, K., Li, C. Z. (2015), "Influence of graphene oxide additions on the microstructure and mechanical strength of cement." New Carbon Materials, Vol. 30, No. 4, pp.349-356. https://doi.org/10.1016/S1872-5805(15)60194-9
  39. Wang, Q., Li, S., Pan, S., Cui, X., Corr, D. J., Shah, S. P. (2019), "Effect of graphene oxide on the hydration and microstructure of fly ash-cement system." Construction and Building Materials, Vol. 198, pp.106-119. https://doi.org/10.1016/j.conbuildmat.2018.11.199
  40. Zhang, R., Cheng, X., Hou, P., Ye, Z. (2015), "Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage." Construction and Building Materials, Vol. 81, pp.35-41. https://doi.org/10.1016/j.conbuildmat.2015.02.003