ALEXANDROV TOPOLOGIES AND NON-SYMMETRIC PSEUDO-METRICS

Ju-mok OH^{a} and Yong Chan Kim ${ }^{\text {b,* }}$

Abstract

In this paper, we investigate the properties of Alexandrov topologies, non-symmetric pseudo-metrics and lower approximation operators on $[0, \infty]$. Moreover, we investigate the relations among Alexandrov topologies, non-symmetric pseudo-metrics and lower approximation operators. We give their examples.

1. Introduction

Hájek [3] introduced a complete residuated lattice which is an algebraic structure for many valued logic. Pawlak $[12,13]$ introduced the rough set theory as a formal tool to deal with imprecision and uncertainty in the data analysis. By using the concepts of lower and upper approximation operators, information systems and decision rules are investigated in complete residuated lattices [1-11,14,15]. Kim [6-10] investigated the properties of Alexandrov topologies, fuzzy preorders and join-preserving maps in complete residuated lattices.

In this paper, we investigate the properties of Alexandrov topologies, non-symmetric pseudo-metrics and lower approximation operators on $[0, \infty]$. We give their examples. In fact, categories of Alexandrov topologies, non-symmetric pseudo-metrics and lower approximation operators are isomorphic.

2. Preliminaries

Let $([0, \infty], \leq, \vee,+, \wedge, \rightarrow, \infty, 0)$ be a structure where

[^0]\[

$$
\begin{gathered}
x \rightarrow y=\bigwedge\{z \in[0, \infty] \mid z+x \geq y\}=(y-x) \vee 0 \\
\infty+a=a+\infty=\infty, \forall a \in[0, \infty], \infty \rightarrow \infty=0
\end{gathered}
$$
\]

Definition 2.1. Let X be a set. A function $d_{X}: X \times X \rightarrow[0, \infty]$ is called a non-symmetric pseudo-metric if it satisfies the following conditions:
(M1) $d_{X}(x, x)=0$ for all $x \in X$,
(M2) $d_{X}(x, y)+d_{X}(y, z) \geq d_{X}(x, z)$, for all $x, y, z \in X$.
The pair $\left(X, d_{X}\right)$ is called a non-symmetric pseudo-metric space.
Remark 2.2. (1) We define a function $d_{[0, \infty]^{X}}:[0, \infty]^{X} \times[0, \infty]^{X} \rightarrow[0, \infty]$ as $d_{[0, \infty]^{X}}(A, B)=\bigvee_{x \in X}(A(x) \rightarrow B(x))=\bigvee_{x \in X}((B(x)-A(x)) \vee 0)$. Then $\left([0, \infty]^{X}, d_{[0, \infty]^{X}}\right)$ is a non-symmetric pseudo-metric space.
(2) If (X, d_{X}) is a non-symmetric pseudo-metric space and we define a function $d_{X}^{-1}(x, y)=d_{X}(y, x)$, then $\left(X, d_{X}^{-1}\right)$ is a non-symmetric pseudo-metric space.
(3) Let $\left(X, d_{X}\right)$ be a non-symmetric pseudo-metric space and define $\left(d_{X} \oplus d_{X}\right)(x, z)=$ $\bigwedge_{y \in X}\left(d_{X}(x, y)+d_{X}(y, z)\right)$ for each $x, z \in X$. By (M2), $\left(d_{X} \oplus d_{X}\right)(x, z) \geq d_{X}(x, z)$ and $\left(d_{X} \oplus d_{X}\right)(x, z) \leq d_{X}(x, x)+d_{X}(x, z)=d(x, z)$. Hence $\left(d_{X} \oplus d_{X}\right)=d_{X}$.
(4) If d_{X} is a non-symmetric pseudo-metric and $d_{X}(x, y)=d_{X}(y, x)$ for each $x, y \in X$, then d_{X} is a pseudo-metric

Example 2.3. (1) Let $X=\{a, b, c\}$ be a set and define maps $d_{X}^{i}: X \times X \rightarrow[0, \infty]$ for $i=1,2,3$ as follows:

$$
d_{X}^{1}=\left(\begin{array}{ccc}
0 & 6 & 5 \\
6 & 0 & 1 \\
15 & 7 & 0
\end{array}\right), d_{X}^{2}=\left(\begin{array}{ccc}
0 & 6 & 3 \\
7 & 0 & 4 \\
0 & 5 & 0
\end{array}\right), d_{X}^{3}=\left(\begin{array}{ccc}
0 & 3 & 7 \\
6 & 0 & 9 \\
5 & 4 & 0
\end{array}\right) .
$$

Since $d_{X}^{1}(c, b)+d_{X}^{1}(b, a)=13<d_{X}^{1}(c, a)=15, d_{X}^{1}$ is not a non-symmetric pseudometric. Since d_{X}^{2} and d_{X}^{3} are non-symmetric pseudo-metrics, $d_{X}^{k} \oplus d_{X}^{k}=d_{X}^{k}$ for $k=2,3$.

3. Alexandrov Topologies and Non-symmetric Pseudo-metrics

We define the following two definitions as a sense in [2, 5-10].
Definition 3.1. A subset $\tau_{X} \subset[0, \infty]^{X}$ is called an Alexandrov topology on X iff it satisfies the following conditions:
(AT1) $\alpha_{X} \in \tau_{X}$ where $\alpha_{X}(x)=\alpha$ for each $x \in X$ and $\alpha \in[0, \infty]$.
(AT2) If $A_{i} \in \tau_{X}$ for all $i \in I$, then $\bigvee_{i \in I} A_{i}, \bigwedge_{i \in I} A_{i} \in \tau_{X}$.
(AT3) If $A \in \tau_{X}$ and $\alpha \in[0, \infty]$, then $\alpha+A, \alpha \rightarrow A \in \tau_{X}$ where $(\alpha \rightarrow A)(x)=$ $(A(x)-\alpha) \vee 0$.

The pair $\left(X, \tau_{X}\right)$ is called an Alexandrov topological space.
Definition 3.2. A map $\mathcal{H}:[0, \infty]^{X} \rightarrow[0, \infty]^{X}$ is called a lower approximation operator if it satisfies the following conditions, for all $A, A_{i} \in[0, \infty]^{X}$, and $\alpha \in[0, \infty]$,
(H1) $\mathcal{H}(\alpha+A)=\alpha+\mathcal{H}(A)$ where $(\alpha+A)(x)=\alpha+A(x)$,
(H2) $\mathcal{H}\left(\bigwedge_{i \in I} A_{i}\right)=\bigwedge_{i \in I} \mathcal{H}\left(A_{i}\right)$,
(H3) $\mathcal{H}(A) \leq A$,
(H4) $\mathcal{H}(\mathcal{H}(A))=\mathcal{H}(A)$.
Theorem 3.3. Let $d_{X} \in[0, \infty]^{X \times X}$ be a non-symmetric pseudo-metric. Define $\mathcal{H}_{d_{X}}(A):[0, \infty]^{X} \rightarrow[0, \infty]^{X}$ as follows

$$
\mathcal{H}_{d_{X}}(A)(y)=\bigwedge_{x \in X}\left(A(x)+d_{X}(x, y)\right) .
$$

Then $\mathcal{H}_{d_{X}}$ is a lower approximation operator.
Proof. Since $\mathcal{H}_{d_{X}}(A)(y)=\bigwedge_{x \in X}\left(A(x)+d_{X}(x, y)\right)$,
(H1) $\mathcal{H}_{d_{X}}(\alpha+A)=\alpha+\mathcal{H}_{d_{X}}(A)$.
(H2) $\mathcal{H}_{d_{X}}\left(\bigwedge_{i \in \Gamma} A_{i}\right)=\bigwedge_{i \in \Gamma} \mathcal{H}_{d_{X}}\left(A_{i}\right)$.
(H3) $\mathcal{H}_{d_{X}}(A)(y)=\bigwedge_{x \in X}\left(A(x)+d_{X}(x, y)\right) \leq A(y)+d_{X}(y, y)=A(y)$.
(H4) For all $A \in[0, \infty]^{X}, z \in X$,

$$
\begin{aligned}
& \mathcal{H}_{d_{X}}\left(\mathcal{H}_{d_{X}}(A)\right)(z)=\bigwedge_{y \in X}\left(\mathcal{H}_{d_{X}}(A)(y)+d_{X}(y, z)\right) \\
& \left.=\bigwedge_{y \in X}\left(\bigwedge_{x \in X}\left(A(x)+d_{X}(x, y)\right)\right)+d_{X}(y, z)\right) \\
& =\bigwedge_{x \in X}\left(A(x)+\bigwedge_{y \in X}\left(d_{X}(x, y)+d_{X}(y, z)\right)\right) \\
& =\bigwedge_{x \in X}\left(A(x)+d_{X}(x, z)\right)=\mathcal{H}_{d_{X}}(A)(z) .
\end{aligned}
$$

Hence $\mathcal{H}_{d_{X}}$ is a lower approximation operator.
Theorem 3.4. A map $\mathcal{H}:[0, \infty]^{X} \rightarrow[0, \infty]^{X}$ is a lower approximation operator iff there exist a non-symmetric pseudo-metric $d_{\mathcal{H}}$ on X such that

$$
\mathcal{H}(A)(y)=\bigwedge_{x \in X}\left(A(x)+d_{\mathcal{H}}(x, y)\right) .
$$

Proof. (\Rightarrow) Put $d_{\mathcal{H}}: X \times X \rightarrow[0, \infty]$ as $d_{\mathcal{H}}(x, y)=\mathcal{H}\left(0_{x}\right)(y)$ where $0_{x}(x)=0$ and $0_{x}(y)=\infty$ for $x \neq y \in X$. (M1) $d_{\mathcal{H}}(x, x)=\mathcal{H}\left(0_{x}\right)(x) \leq 0_{x}(x)=0$.
(M2) Since $A=\bigwedge_{y \in X}\left(A(y)+0_{y}\right)$ and $\mathcal{H}\left(0_{x}\right)=\bigwedge_{y \in X}\left(\mathcal{H}\left(0_{x}\right)(y)+0_{y}\right)$,

$$
\begin{aligned}
& \bigwedge_{y \in X}\left(d_{\mathcal{H}}(x, y)+d_{\mathcal{H}}(y, z)\right) \\
& =\bigwedge_{y \in X}\left(\mathcal{H}\left(0_{x}\right)(y)+\mathcal{H}\left(0_{y}\right)(z)\right)(\text { by }(\mathrm{H} 2)) \\
& =\mathcal{H}\left(\bigwedge_{y \in X}\left(\mathcal{H}\left(0_{x}\right)(y)+0_{y}\right)(z)\right)=\mathcal{H}\left(\mathcal{H}\left(0_{x}\right)\right)(z) \\
& =\mathcal{H}\left(0_{x}\right)(z)=d_{\mathcal{H}}(x, z) .
\end{aligned}
$$

Hence $d_{\mathcal{H}}$ is a non-symmetric pseudo-metric. Moreover,

$$
\begin{aligned}
& \mathcal{H}(A)(y)=\mathcal{H}\left(\bigwedge_{x \in X}\left(A(x)+0_{x}\right)\right)(y) \\
& =\bigwedge_{x \in X}\left(A(x)+\mathcal{H}\left(0_{x}\right)(y)\right) \\
& \left.=\bigwedge_{x \in X}\left(A(x)+d_{\mathcal{H}}(x, y)\right)\right) .
\end{aligned}
$$

(\Leftarrow) It follow from Theorem 3.3.
Theorem 3.5. Let d_{X} be a non-symmetric pseudo-metric on X. Define $\tau_{d_{X}}=$ $\left\{A \in[0, \infty]^{X} \mid A(x)+d_{X}(x, y) \geq A(y)\right\}$. Then the following properties hold.
(1) $\tau_{d_{X}}$ is an Alexandrov topology on X.
(2) $d_{X}(x,-) \in \tau_{d_{X}}$. Moreover, $A \in \tau_{d_{X}}$ iff $A=\bigwedge_{x \in X}\left(A(x)+d_{X}(x,-)\right)=$ $\mathcal{H}_{d_{X}}(A)$.

Proof. (1) (AT1) Since $\alpha_{X}(x)+d_{X}(x, y) \geq \alpha_{X}(y)$, we have $\alpha_{X} \in \tau_{d_{X}}$.
(AT2) If $A_{i} \in \tau_{d_{X}}$ for all $i \in I$, then

$$
\begin{aligned}
& \left(\bigwedge_{i \in I} A_{i}\right)(x)+d_{X}(x, y)=\bigwedge_{i \in I}\left(A_{i}(x)+d_{X}(x, y)\right) \\
& \geq \bigwedge_{i \in I} A_{i}(y), \\
& \left(\bigvee_{i \in I} A_{i}\right)(x)+d_{X}(x, y)=\bigvee_{i \in I}\left(A_{i}(x)+d_{X}(x, y)\right) \\
& \geq \bigvee_{i \in I} A_{i}(y) .
\end{aligned}
$$

Hence $\bigwedge_{i \in I} A_{i}, \bigvee_{i \in I} A_{i} \in \tau_{d_{X}}$.
(AT3) If $A \in \tau_{e_{X}}$ and $\alpha \in[0, \infty]$, then

$$
\begin{aligned}
& (\alpha+A)(x)+d_{X}(x, y) \geq(\alpha+A)(y), \\
& (\alpha \rightarrow A)(x)+d_{X}(x, y)=((A(x)-\alpha) \vee 0)+d(x, y) \\
& =((A(x)-\alpha)+d(x, y)) \vee d(x, y) \\
& \geq(A(y)-\alpha) \vee 0=(\alpha \rightarrow A)(y) .
\end{aligned}
$$

So, $\alpha+A, \alpha \rightarrow A \in \tau_{d_{X}}$. Hence $\tau_{d_{X}}$ is an Alexandrov topology on X.
(2) Since $d_{X}(x, y)+d_{X}(y, z) \geq d_{X}(x, z), d_{X}(x,-) \in \tau_{d_{X}}$. Let $A \in \tau_{d_{X}}$. Then $\bigwedge_{x \in X}\left(A(x)+d_{X}(x, y)\right) \geq A(y)$ and $\bigwedge_{x \in X}\left(A(x)+d_{X}(x, y)\right) \leq A(y)+d_{X}(y, y)=A(y)$. Hence $A=\bigwedge_{x \in X}\left(A(x)+d_{X}(x,-)\right)=\mathcal{H}_{d_{X}}(A)$.

Conversely, since $\mathcal{H}_{d_{X}}(A)(y)+d_{X}(y, z)=\bigwedge_{x \in X}\left(A(x)+d_{X}(x, y)\right)+d_{X}(y, z) \geq$ $\bigwedge_{x \in X}\left(A(x)+d_{X}(x, z)\right)=\mathcal{H}_{d_{X}}(A)(z)$. So, $A=\mathcal{H}_{d_{X}}(A) \in \tau_{d_{X}}$.

Theorem 3.6. Let $\mathcal{H}:[0, \infty]^{X} \rightarrow[0, \infty]^{X}$ be a lower approximation operator. Then the following properties hold.
(1) $\tau_{\mathcal{H}}=\left\{A \in[0, \infty]^{X} \mid \mathcal{H}(A)=A\right\}$ is an Alexandrov topology on X such that $\tau_{\mathcal{H}}=\left\{\mathcal{H}(A) \mid A \in[0, \infty]^{X}\right\}$.
(2) Define $d_{\mathcal{H}}: X \times X \rightarrow[0, \infty]$ as $d_{\mathcal{H}}(x, y)=\mathcal{H}\left(0_{x}\right)(y)$ where $0_{x}(x)=0$ and $0_{x}(y)=\infty$ for $x \neq y \in X$. Then $d_{\mathcal{H}}$ is a non-symmetric pseudo-metric on X such $\mathcal{H}_{d_{\mathcal{H}}}=\mathcal{H}$ and $\tau_{d_{\mathcal{H}}}=\tau_{\mathcal{H}}$.

Proof. (1) (AT1) Since $\mathcal{H}\left(\alpha_{X}\right)=\mathcal{H}\left(\alpha+0_{X}\right)=\alpha+0_{X}=\alpha_{X}$, then $\alpha_{X} \in \tau_{\mathcal{H}}$.
(AT2) For $A_{i} \in \tau_{\mathcal{H}}$ for each $i \in \Gamma$, by (H2), $\bigwedge_{i \in \Gamma} A_{i} \in \tau_{\mathcal{H}}$. Since $\bigvee_{i \in \Gamma} A_{i}=$ $\bigvee_{i \in \Gamma} \mathcal{H}\left(A_{i}\right) \leq \mathcal{H}\left(\bigvee_{i \in \Gamma} A_{i}\right) \leq \bigvee_{i \in \Gamma} A_{i}$, Thus, $\bigvee_{i \in \Gamma} A_{i} \in \tau_{\mathcal{H}}$.
(AT3) For $A \in \tau_{\mathcal{H}}$, by (H1), $\alpha+A \in \tau_{\mathcal{H}}$.
Since $\alpha+\mathcal{H}(\alpha \rightarrow A)=\mathcal{H}(\alpha+(\alpha \rightarrow A)) \geq \mathcal{H}(A), \mathcal{H}(\alpha \rightarrow A) \geq(\mathcal{H}(A)-$ $\alpha) \vee 0=\alpha \rightarrow \mathcal{H}(A)=\alpha \rightarrow A$. Then $\alpha \rightarrow A \in \tau_{\mathcal{H}}$. Hence $\tau_{\mathcal{H}}$ is an Alexandrov topology on X. Let $A \in \tau_{\mathcal{H}}$. Then $A=\mathcal{H}(A) \in\left\{\mathcal{H}(A) \mid A \in[0, \infty]^{X}\right\}$. Let $\mathcal{H}(A) \in\left\{\mathcal{H}(A) \mid A \in[0, \infty]^{X}\right\}$. Since $\mathcal{H}(\mathcal{H}(A))=\mathcal{H}(A), \mathcal{H}(A) \in \tau_{\mathcal{H}}$.
(2) By Theorem 3.4, $d_{\mathcal{H}}$ is a non-symmetric pseudo-metric on X. Moreover,

$$
\begin{aligned}
\mathcal{H}_{d_{\mathcal{H}}}(A)(y) & \left.=\bigwedge_{x \in X}\left(A(x)+d_{\mathcal{H}}(x, y)\right)\right) \\
& =\bigwedge_{x \in X}\left(A(x)+\mathcal{H}\left(0_{x}\right)(y)\right) \\
& =\mathcal{H}\left(\bigwedge_{x \in X}\left(A(x)+0_{x}\right)\right)(y)=\mathcal{H}(A)(y)
\end{aligned}
$$

$\tau_{d_{\mathcal{H}}}=\tau_{\mathcal{H}}$ from:

$$
A \in \tau_{d_{\mathcal{H}}} \text { iff } \mathcal{H}_{d_{\mathcal{H}}}(A)=A \text { iff } \mathcal{H}(A)=A \text { iff } A \in \tau_{\mathcal{H}}
$$

Example 3.7. (1) Define maps $d^{i}:[0, \infty] \times[0, \infty] \rightarrow[0, \infty]$ for $i=0,1,2,3$ as follows:

$$
\begin{gathered}
d^{0}(x, y)=\left\{\begin{array}{ll}
0, & \text { if } x=y, \\
\infty, & \text { if } x \neq y,
\end{array} \quad d^{1}(x, y)= \begin{cases}0, & \text { if } x \geq y, \\
\infty, & \text { if } x<y,\end{cases} \right. \\
d^{2}(x, y)=\left\{\begin{array}{ll}
0, & \text { if } x \leq y, \\
\infty, & \text { if } x>y,
\end{array} d^{3}(x, y)=0\right.
\end{gathered}
$$

Since $\mathcal{H}_{d_{X}}(A)(y)=\bigwedge_{x \in X}\left(A(x)+d_{X}(x, y)\right)$, we can obtain

$$
\begin{aligned}
& \mathcal{H}_{d^{0}}(A)(y)=\bigwedge_{x \in X}\left(A(x)+d_{X}^{0}(x, y)\right)=A(y), \\
& \mathcal{H}_{d^{1}}(A)=\bigwedge_{x \geq y} A(x), \\
& \mathcal{H}_{d^{2}}(A)=\bigwedge_{x \leq y} A(x), \\
& \mathcal{H}_{d^{3}}(A)=\bigwedge_{x \in X} A(x) .
\end{aligned}
$$

$$
\begin{aligned}
\tau_{d^{0}} & =[0, \infty]^{[0, \infty]} \\
\tau_{d^{1}} & =\left\{A \in[0, \infty]^{[0, \infty]} \mid A(x) \leq A(y) \text { if } x \leq y\right\}, \\
\tau_{d^{2}} & =\left\{A \in[0, \infty]^{[0, \infty]} \mid A(x) \geq A(y) \text { if } x \leq y\right\}, \\
\tau_{d^{3}} & =\left\{\alpha_{X} \in[0, \infty]^{[0, \infty]} \mid \alpha \in[0, \infty]\right\}
\end{aligned}
$$

Theorem 3.8. Let τ be Alexandrov topology on X. Then the following properties hold.
(1) Define $\mathcal{H}_{\tau}:[0, \infty]^{X} \rightarrow[0, \infty]^{X}$ as follows:

$$
\mathcal{H}_{\tau}(A)=\bigvee\{B \mid B \leq A, B \in \tau\}
$$

Then \mathcal{H}_{τ} is a lower approximation operator such that $\tau_{\mathcal{H}_{\tau}}=\tau, \mathcal{H}_{\tau_{\mathcal{H}}}=\mathcal{H}$.
(2) Define $d_{\tau}: X \times X \rightarrow[0, \infty]$ as

$$
d_{\tau}(x, y)=\bigvee_{A \in \tau}(A(x) \rightarrow A(y))=\bigvee_{A \in \tau}((A(y)-A(x)) \vee 0)
$$

Then d_{τ} is a non-symmetric pseudo-metric such that $\tau=\tau_{\mathcal{H}_{d_{\tau}}}=\tau_{d_{\tau}}$. Moreover, $\mathcal{H}_{\tau}=\mathcal{H}_{d_{\tau}}$ and $d_{\tau}=d_{\mathcal{H}_{\tau}}$.
(3) If $\mathcal{H}:[0, \infty]^{X} \rightarrow[0, \infty]^{X}$ is a lower approximation operator, then

$$
\bigwedge_{y \in X}\left(\mathcal{H}\left(0_{x}\right)(y)+\mathcal{H}\left(0_{y}\right)(z)\right)=\mathcal{H}\left(0_{x}\right)(z)
$$

for all $x, y, z \in X$ and $d_{\tau_{\mathcal{H}}}=d_{\mathcal{H}}$.
Proof. (1) We show $\mathcal{H}_{\tau}(A)=\bigvee\{B \mid B \leq A, B \in \tau\}$ is a lower approximation operator.
(H1) For $\alpha \in[0, \infty], A \in[0, \infty]^{X}$,

$$
\begin{aligned}
& \alpha+\mathcal{H}_{\tau}(A) \\
& =\alpha+\bigvee\{B \mid B \leq A, B \in \tau\} \\
& =\bigvee\{\alpha+B \mid \alpha+B \leq \alpha+A, \alpha+B \in \tau\} \\
& =\mathcal{H}_{\tau}(\alpha+A)
\end{aligned}
$$

(H2) Since $\mathcal{H}_{\tau}(A) \leq \mathcal{H}_{\tau}(B)$ for $A \leq B$, we have $\bigwedge_{i \in \Gamma} \mathcal{H}_{\tau}\left(A_{i}\right) \geq \mathcal{H}_{\tau}\left(\bigwedge_{i \in \Gamma} A_{i}\right)$. Since $\bigwedge_{i \in \Gamma} A_{i} \geq \bigwedge_{i \in \Gamma} \mathcal{H}_{\tau}\left(A_{i}\right) \in \tau$, then $\mathcal{H}_{\tau}\left(\bigwedge_{i \in \Gamma} A_{i}\right) \geq \bigwedge_{i \in \Gamma} \mathcal{H}_{\tau}\left(A_{i}\right)$.
(H3) It follows from the definition.
(H4) Since $\mathcal{H}_{\tau}(A) \in \tau$, we have $\mathcal{H}_{\tau}\left(\mathcal{H}_{\tau}(A)\right)=\mathcal{H}_{\tau}(A)$.
Let $A \in \tau_{\mathcal{H}_{\tau}}$. Then $A=\mathcal{H}_{\tau}(A) \in \tau$. Hence $\tau_{\mathcal{H}_{\tau}} \subset \tau$.
Let $A \in \tau$. Then $\mathcal{H}_{\tau}(A)=A$. So, $A \in \tau_{\mathcal{H}_{\tau}}$. Hence $\tau \subset \tau_{\mathcal{H}_{\tau}}$.
Since $\mathcal{H}_{\tau_{\mathcal{H}}}(A)=\bigvee\left\{B \mid B \leq A, B \in \tau_{\mathcal{H}}\right\}$ and $A \geq \mathcal{H}(\mathcal{H}(A))=\mathcal{H}(A)$, we have $\mathcal{H}(A) \leq \mathcal{H}_{\tau_{\mathcal{H}}}(A)$. For $B_{i} \in \tau_{\mathcal{H}}$, since $\mathcal{H}\left(\bigvee_{i \in \Gamma} B_{i}\right) \geq \bigvee_{i \in \Gamma} \mathcal{H}\left(B_{i}\right)=\bigvee_{i \in \Gamma} B_{i}$, then $\mathcal{H}\left(\mathcal{H}_{\tau_{\mathcal{H}}}(A)\right)=\mathcal{H}_{\tau_{\mathcal{H}}}(A)$. So, $\mathcal{H}(A) \geq \mathcal{H}_{\tau_{\mathcal{H}}}(A)$.
(2) We easily show that d_{τ} is a non-symmetric pseudo-metric.

Let $A \in \tau$. Then $\mathcal{H}_{d_{\tau}}(A)=A$ because
$\mathcal{H}_{d_{\tau}}(A)(y)=\bigwedge_{x \in X}\left(A(x)+d_{\tau}(x, y)\right)=\bigwedge_{x \in X}\left(A(x)+\bigvee_{B \in \tau}(B(x) \rightarrow B(y))\right.$
$\left.\geq \bigwedge_{x \in X}(A(x)+(A(x) \rightarrow A(y)))=\bigwedge_{x \in X}(A(x)+((A(y)-A(x)) \vee 0))\right) \geq A(y)$,
So, $\tau \subset \tau_{\mathcal{H}_{d \tau}}$
Let $A=\mathcal{H}_{d_{\tau}}(A)$. Then

$$
A=\mathcal{H}_{d_{\tau}}(A)=\bigwedge_{x \in X}\left(A(x)+\bigvee_{B \in \tau}(B(x) \rightarrow B)\right) \in \tau .
$$

So, $\tau_{\mathcal{H}_{d \tau}} \subset \tau$.
Let $A \in \tau$. Then $A \in \tau_{d_{\tau}}$ because

$$
\begin{aligned}
& A(x)+d_{\tau}(x, y)=A(x)+\bigvee_{B \in \tau}(B(x) \rightarrow B(y)) \\
& \geq A(x)+(A(x) \rightarrow A(y))=A(x)+((A(y)-A(x)) \vee 0))) \geq A(y) .
\end{aligned}
$$

So, $\tau \subset \tau_{d_{\tau}}$
Let $A \in \tau_{d_{\tau}}$. Then $A \in \tau$ because

$$
A=\mathcal{H}_{d_{\tau}}(A)=\bigwedge_{x \in X}\left(A(x)+\bigvee_{B \in \tau}(B(x) \rightarrow B)\right) \in \tau
$$

Since $A \geq \mathcal{H}_{d_{\tau}}(A) \in \tau$, then $\mathcal{H}_{\tau}(A) \geq \mathcal{H}_{d_{\tau}}(A)$. Since

$$
\begin{aligned}
& \mathcal{H}_{d_{\tau}}(A)(y)=\bigwedge_{x \in X}\left(A(x)+\bigvee_{B \in \tau}(B(x) \rightarrow B(y))\right. \\
& \geq \bigwedge_{x \in X}\left(\mathcal{H}_{\tau}(A)(x)+\left(\mathcal{H}_{\tau}(A)(x) \rightarrow \mathcal{H}_{\tau}(A)(y)\right) \geq \mathcal{H}_{\tau}(A)(y),\right.
\end{aligned}
$$

Hence $\mathcal{H}_{d_{\tau}}(A)=\mathcal{H}_{\tau}(A)$.
(3) Since $\mathcal{H}\left(0_{x}\right)=\bigwedge_{y \in X}\left(\mathcal{H}\left(0_{x}\right)(y)+0_{y}(-)\right), \bigwedge_{y \in X}\left(\mathcal{H}\left(0_{x}\right)(y)+\mathcal{H}\left(0_{y}\right)(z)\right)=$ $\mathcal{H}\left(0_{x}\right)(z)$ because

$$
\begin{aligned}
& \mathcal{H}\left(0_{x}\right)(z)=\mathcal{H}\left(\mathcal{H}\left(0_{x}\right)(z)=\mathcal{H}\left(\bigwedge_{y \in X}\left(\mathcal{H}\left(0_{x}\right)(y)+0_{y}(-)\right)\right)(z)\right. \\
& =\bigwedge_{y \in X}\left(\mathcal{H}\left(0_{x}\right)(y)+\mathcal{H}\left(0_{y}\right)(z)\right) .
\end{aligned}
$$

$$
d_{\mathcal{T}_{\mathcal{H}}}(x, y)=\bigvee_{A \in \tau_{\mathcal{H}}}((A(y)-A(x)) \vee 0)
$$

$$
\geq \bigvee_{z \in X}\left(\left(\mathcal{H}\left(0_{z}\right)(y)-\mathcal{H}\left(0_{z}\right)(x)\right) \vee 0\right) \geq\left(\mathcal{H}\left(0_{x}\right)(y)-\mathcal{H}\left(0_{x}\right)(x)\right) \vee 0
$$

$$
\geq\left(\mathcal{H}\left(0_{x}\right)(y)-\left(0_{x}\right)(x)\right) \vee 0=\mathcal{H}\left(0_{x}\right)(y),
$$

$$
\begin{aligned}
& d_{\tau_{\mathcal{H}}}(x, y)=\bigvee_{A \in \tau_{\mathcal{H}}}((A(y)-A(x)) \vee 0)=\bigvee_{A \in[0, \infty]^{X}}((\mathcal{H}(A)(y)-\mathcal{H}(A)(x)) \vee 0) \\
& =\bigvee_{A \in[0, \infty]^{X}}\left(\left(\bigwedge_{z \in X}\left(A(z)+\mathcal{H}\left(0_{z}\right)(y)\right)-\bigwedge_{z \in X}\left(A(z)+\mathcal{H}\left(0_{z}\right)(x)\right)\right) \vee 0\right) \\
& \leq \bigvee_{z \in X}\left(\left(\mathcal{H}\left(0_{z}\right)(y)-\mathcal{H}\left(0_{z}\right)(x)\right) \vee 0\right) \leq \mathcal{H}\left(0_{x}\right)(y) .
\end{aligned}
$$

Hence $d_{\tau_{\mathcal{H}}}(x, y)=\mathcal{H}\left(0_{x}\right)(y)=d_{\mathcal{H}}(x, y)$.
Theorem 3.9. Let $d_{X} \in[0, \infty]^{X \times X}$ be a non-symmetric pseudo-metric. Then $d_{\mathcal{H}_{d_{X}}}(x, y)=\mathcal{H}_{d_{X}}\left(0_{X}\right)(y)=d_{X}(x, y)=d_{\tau_{d_{X}}}(x, y)$ for each $x, y \in X$.

Proof. Since $\mathcal{H}_{d_{X}}(A)(y)=\bigwedge_{x \in X}\left(A(x)+d_{X}(x, y)\right), \mathcal{H}_{d_{X}}\left(0_{x}\right)(y)=\bigwedge_{x \in X}\left(0_{x}(x)+\right.$ $\left.d_{X}(x, y)\right)=d_{X}(x, y)$. Since $d_{X}(x,-) \in \tau_{d_{X}}$ and $A=\mathcal{H}_{d_{X}}(A)$ for $A \in \tau_{d_{X}}$,

$$
\begin{aligned}
& d_{\tau_{d_{X}}}(x, y)=\bigvee_{A \in \tau_{d_{X}}}((A(y)-A(x)) \vee 0) \\
& \geq\left(d_{X}(x, y)-d_{X}(x, x)\right) \vee 0=d_{X}(x, y), \\
& d_{\tau_{d_{X}}}(x, y)=\bigvee_{A \in \tau_{d_{X}}}((A(y)-A(x)) \vee 0) \\
& =\bigvee_{A \in \tau_{d_{X}}}\left(\left(\mathcal{H}_{d_{X}}(A)(y)-\mathcal{H}_{d_{X}}(A)(x)\right) \vee 0\right) \\
& =\bigvee_{A \in \tau_{d_{X}}}\left(\left(\bigwedge_{z \in X}\left(A(z)+d_{X}(z, y)\right)-\left(\bigwedge_{z \in X}\left(A(z)+d_{X}(z, x)\right)\right) \vee 0\right)\right. \\
& \leq \bigvee_{z \in X}\left(\left(d_{X}(z, y)-d_{X}(z, x)\right) \vee 0\right) \leq d_{X}(x, y) .
\end{aligned}
$$

Example 3.10. Let $X=\{a, b, c\}$ be a set and $A \in[0, \infty]^{X}$ as

$$
A(a)=7, A(b)=5, A(c)=10
$$

(1) Define $d_{A}(x, y)=(A(y)-A(x)) \vee 0$ as

$$
d_{A}=\left(\begin{array}{lll}
0 & 0 & 3 \\
2 & 0 & 5 \\
0 & 0 & 0
\end{array}\right), \mathcal{H}_{d_{A}}(B)=\left(\begin{array}{c}
B(a) \wedge(2+B(b)) \wedge B(c) \\
B(a) \wedge B(b) \wedge B(c) \\
(3+B(a)) \wedge(5+B(b)) \wedge B(c)
\end{array}\right) .
$$

Then $d_{A}(a)=,(0,0,3), d_{A}(b)=,(2,0,5), d_{A}(c)=,(0,0,0), A \in \tau_{d_{A}}$. Moreover, $\tau_{d_{A}}=\left\{\mathcal{H}_{d_{A}}(B) \mid B \in[0, \infty]^{X}\right\}$.
(2) Define $d_{A}^{1}(x, y)=|A(x)-A(y)|$ as

$$
d_{A}^{1}=\left(\begin{array}{lll}
0 & 2 & 3 \\
2 & 0 & 5 \\
3 & 5 & 0
\end{array}\right), \mathcal{H}_{d_{A}^{1}}(B)=\left(\begin{array}{c}
B(a) \wedge(2+B(b)) \wedge(3+B(c)) \\
(2+B(a)) \wedge B(b) \wedge(5+B(c)) \\
(3+B(a)) \wedge(5+B(b)) \wedge B(c)
\end{array}\right) \text {. }
$$

Then $d_{A}^{1}(a)=,(0,2,3), d_{A}^{1}(b)=,(2,0,5), d_{A}(c)=,(3,5,0), A \in \tau_{d_{A}^{1}}$. Moreover, $\tau_{d_{A}^{1}}=\left\{\mathcal{H}_{d_{A}^{1}}(B) \mid B \in[0, \infty]^{X}\right\}$.
(3) Define d_{X}^{2} and $d_{X}^{2} \oplus d_{X}^{2}(x, z)=\bigwedge_{y \in X}\left(d_{X}^{2}(x, y)+d_{X}^{2}(y, z)\right.$ as

$$
d_{X}^{2}=\left(\begin{array}{lll}
0 & 4 & 1 \\
7 & 0 & 3 \\
2 & 9 & 0
\end{array}\right), d_{X}^{2} \oplus d_{X}^{2}=\left(\begin{array}{ccc}
0 & 4 & 1 \\
5 & 0 & 3 \\
2 & 6 & 0
\end{array}\right) .
$$

Since $d_{X}^{2}(b, c)+d_{X}^{2}(c, a)=5<d_{X}^{1}(b, a)=7$ and $d_{X}^{2}(c, a)+d_{X}^{2}(a, b)=6<d_{X}^{1}(b, a)=$ $9, d_{X}^{2}$ is not a non-symmetric pseudo-metric.
(4) Define $d_{X}^{3}=d_{X}^{2} \oplus d_{X}^{2}$.

$$
d_{X}^{3}=\left(\begin{array}{lll}
0 & 4 & 1 \\
5 & 0 & 3 \\
2 & 6 & 0
\end{array}\right), \mathcal{H}_{d_{X}^{3}}(B)=\left(\begin{array}{c}
B(a) \wedge(5+B(b)) \wedge(2+B(c)) \\
(4+B(a)) \wedge B(b) \wedge(6+B(c)) \\
(1+B(a)) \wedge(3+B(b)) \wedge B(c)
\end{array}\right) .
$$

Since d_{X}^{3} is a non-symmetric pseudo-metric, $d_{X}^{3} \oplus d_{X}^{3}=d_{X}^{3}$. Then $d_{X}^{3}(a)=$, $(0,4,1), d_{X}^{3}(b)=,(5,0,3), d_{X}^{3}(c)=,(2,6,0) \in \tau_{d_{X}^{3}}$. Moreover, $\tau_{d_{X}^{3}}=\left\{\mathcal{H}_{d_{X}^{3}}(B) \mid\right.$ $\left.B \in[0, \infty]^{X}\right\}$.

4. Categories of Non-symmetric Pseudo-metrics, Lower Approximation Operators and Alexandrov Topologies

Let LA be a category with object $\left(X, \mathcal{H}_{X}\right)$ where \mathcal{H}_{X} is a lower approximation operator with a morphism $f:\left(X, \mathcal{H}_{X}\right) \rightarrow\left(Y, \mathcal{H}_{Y}\right)$ such that $f^{\leftarrow}\left(\mathcal{H}_{Y}(B)\right) \leq$ $\mathcal{H}_{Y}\left(f^{\leftarrow}(B)\right)$ for all $B \in[0, \infty]^{Y}$.

Let NPM be a category with object $\left(X, d_{X}\right)$ where d_{X} is a non-symmetric pseudo-metric with a morphism $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ such that $d_{Y}(f(x), f(y)) \leq$ $d_{X}(x, y)$ for all $x, y \in X$.

Theorem 4.1. Two categories LA and NPM are isomorphic.
Proof. Define $H: \mathbf{N P M} \rightarrow \mathbf{L A}$ as $H\left(X, d_{X}\right)=\left(X, \mathcal{H}_{d_{X}}\right)$ where $\mathcal{H}_{d_{X}}(A)(y)=$ $\bigwedge_{x \in X}\left(A(x)+d_{X}(x, y)\right)$ from Theorem 3.3. Let $d_{Y}(f(x), f(z)) \leq d_{X}(x, z)$. Then

$$
\begin{aligned}
& f \leftarrow\left(\mathcal{H}_{Y}(B)\right)(x)=\bigwedge_{w \in Y}\left(B(w)+d_{Y}(w, f(x))\right) \\
& \leq \bigwedge_{z \in X}\left(B(f(z))+d_{Y}(f(z), f(x))\right) \\
& \leq \bigwedge_{z \in X}\left(f \leftarrow(B)(z)+d_{X}(z, x)\right)=\mathcal{H}_{Y}(f \leftarrow(B))(x) .
\end{aligned}
$$

Hence H is a functor.
Define a functor $G: \mathbf{L A} \rightarrow \mathbf{N P M}$ as $G\left(X, \mathcal{H}_{X}\right)=\left(X, d_{\mathcal{H}_{X}}\right)$ where $d_{\mathcal{H}_{X}}(x, y)=$ $\mathcal{H}_{X}\left(0_{x}\right)(y)$ from Theorem 3.6(2). Let $f^{\leftarrow}\left(\mathcal{H}_{Y}(B)\right) \leq \mathcal{H}_{Y}\left(f^{\rightarrow}(B)\right)$. Since

$$
\begin{aligned}
& d_{\mathcal{H}_{Y}}(f(x), f(z))=\mathcal{H}_{Y}\left(0_{f(x)}\right)(f(y))=f^{\leftarrow}\left(\mathcal{H}_{Y}\left(0_{f(x)}\right)\right)(y) \\
& \leq \mathcal{H}_{X}\left(f^{\leftarrow}\left(0_{f(x)}\right)\right)(y) \leq \mathcal{H}_{Y}\left(0_{x}\right)(y)=d_{X}(x, y) .
\end{aligned}
$$

Hence G is a functor. Moreover, by Theorem 3.9, $G\left(H\left(X, d_{X}\right)\right)=G\left(X, \mathcal{H}_{d_{X}}\right)=$ $\left(X, d_{\mathcal{H}_{d_{X}}}\right)=\left(X, d_{X}\right)$ and, by Theorem 3.6(2), $H\left(G\left(X, \mathcal{H}_{X}\right)\right)=H\left(X, d_{\mathcal{H}_{X}}\right)=$ $\left(X, \mathcal{H}_{d_{\mathcal{H}_{X}}}\right)=\left(X, \mathcal{H}_{X}\right)$. Thus, LA and NPM are isomorphic.

Let ATOP be a category with object (X, τ_{X}) where τ_{X} is an Alexandrov topology with a morphism $f:\left(X, \tau_{X}\right) \rightarrow\left(Y, \tau_{Y}\right)$ such that $f \leftarrow(B) \in \tau_{X}$ for all $B \in \tau_{Y}$.

Theorem 4.2. Two categories ATOP and LA are isomorphic.

Proof. Define $U: \mathbf{A T O P} \rightarrow \mathbf{L A}$ as $U\left(X, \tau_{X}\right)=\left(X, \mathcal{H}_{\tau_{X}}\right)$ where $\mathcal{H}_{\tau_{X}}(A)=\bigvee\{B \in$ $\left.[0, \infty]^{X} \mid B \leq A, B \in \tau_{X}\right\}$ from Theorem 3.8(1). For $B \in \tau_{d_{X}}$,

$$
\begin{aligned}
& f \leftarrow\left(\mathcal{H}_{\tau_{Y}}(B)\right)=\bigvee\left\{f \leftarrow(C) \mid C \leq B, C \in \tau_{Y}\right\} \\
& \leq \bigvee\left\{f^{\leftarrow}(C) \mid f \leftarrow(C) \leq f \leftarrow(B), f \leftarrow(C) \in \tau_{X}\right\} \\
& \leq \mathcal{H}_{\tau_{X}}\left(f^{\leftarrow}(B)\right) .
\end{aligned}
$$

Hence U is a functor.
Define $W:$ LA \rightarrow ATP as $W\left(X, \mathcal{H}_{X}\right)=\left(X, \tau_{\mathcal{H}_{X}}\right)$ where $\tau_{\mathcal{H}_{X}}=\left\{A \in[0, \infty]^{X} \mid\right.$ $\left.A=\mathcal{H}_{X}(A)\right\}$ from Theorem 3.6(1). For $B=\mathcal{H}_{Y}(B), f^{\leftarrow}(B) \in \tau_{\mathcal{H}_{X}}$ because

$$
f \leftharpoondown(B)=f \leftarrow\left(\mathcal{H}_{\tau_{Y}}(B)\right) \leq \mathcal{H}_{\tau_{X}}(f \leftarrow(B)) \leq f \leftarrow(B) .
$$

Hence W is a functor. Moreover, by Theorem 3.8(1), $U\left(W\left(X, \mathcal{H}_{X}\right)\right)=U\left(X, \tau_{\mathcal{H}_{X}}\right)=$ $\left(X, \mathcal{H}_{\tau_{\mathcal{H}_{X}}}\right)=\left(X, \mathcal{H}_{X}\right)$ and, by Theorem 3.8(1), $W\left(U\left(X, \tau_{X}\right)\right)=W\left(X, \mathcal{H}_{\tau_{X}}\right)=$ $\left(X, \tau_{\mathcal{H}_{\tau_{X}}}\right)=\left(X, \tau_{X}\right)$. Thus, LA and NPM are isomorphic.

Theorem 4.3. Two categories ATOP and NPM are isomorphic.
Proof. Define $T:$ NPM \rightarrow ATOP as $T\left(X, d_{X}\right)=\left(X, \tau_{d_{X}}\right)$ where $\tau_{d_{X}}=\{A \in$ $\left.[0, \infty]^{X} \mid A(x)+d_{X}(x, y) \geq A(y)\right\}$ from Theorem 3.5. Let $d_{Y}(f(x), f(z)) \leq d_{X}(x, z)$. For $B \in \tau_{d_{Y}}$, we have

$$
\begin{aligned}
& f \leftarrow(B)(x)+d_{X}(x, z) \geq B(f(x))+d_{Y}(f(x), f(z)) \\
& \geq B(f(z))=f \leftarrow(B)(z) .
\end{aligned}
$$

Hence T is a functor.
Define $P:$ ATOP $\rightarrow \mathbf{N P M}$ as $P\left(X, \tau_{X}\right)=\left(X, d_{\tau_{X}}\right)$ where $d_{\tau_{X}}(x, y)=\bigvee_{A \in \tau_{X}}(A(x) \rightarrow$ $A(y))$ from Theorem 3.8(2). Let $f^{\leftarrow}(B) \in \tau_{X}$ for $B \in \tau_{Y}$. We have

$$
\begin{aligned}
& d_{\tau_{Y}}(f(x), f(y))=\bigvee_{B \in \tau_{Y}}(B(f(x)) \rightarrow B(f(x))) \\
& =\bigvee_{B \in \tau_{Y}}\left(f(B)(x) \rightarrow f^{\leftarrow}(B)(x)\right) \\
& \leq \bigvee_{A \in \tau_{X}}(A(x) \rightarrow A(y))=d_{\tau_{X}}(x, y)
\end{aligned}
$$

Hence P is a functor. Moreover, by Theorem 3.8(2),T(P(X, $\left.\left.\tau_{X}\right)\right)=T\left(X, d_{\tau_{X}}\right)=$ $\left(X, \tau_{d_{\tau_{X}}}\right)=\left(X, \tau_{X}\right)$ and, by Theorem 3.9, $P\left(T\left(X, d_{X}\right)\right)=P\left(X, \tau_{d_{X}}\right)=\left(X, d_{\tau_{d_{X}}}\right)=$ $\left(X, d_{X}\right)$

References

1. R. Bělohlávek: Fuzzy Relational Systems, Kluwer Academic Publishers, New York, 2002.
2. P. Chen \& D. Zhang: Alexandroff co-topological spaces. Fuzzy Sets and Systems 161 (2010), no. 8, 2505-2514.
3. P. Hájek: Metamathematices of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, 1998.
4. U. Höhle \& S.E. Rodabaugh: Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory. The Handbooks of Fuzzy Sets Series 3, Kluwer Academic Publishers, Boston, 1999.
5. F. Jinming: I-fuzzy Alexandrov topologies and specialization orders. Fuzzy Sets and Systems 158 (2007), 2359-2374.
6. Y.C. Kim: Alexandrov L-topologies International Journal of Pure and Applied Mathematics. 93 (2014), no. 2, 165-179.
7. \qquad : Join preserving maps, fuzzy preorders and Alexandrov fuzzy topologies. International Journal of Pure and Applied Mathematics, 92 (2014), no. 5, 703-718.
8. \qquad : Join-meet preserving maps and Alexandrov fuzzy topologies. Journal of Intelligent and Fuzzy Systems 28 (2015), 457-467.
9. \qquad : Join-meet preserving maps and fuzzy preorders. Journal of Intelligent and Fuzzy Systems 28 (2015), 1089-1097.
10. \qquad : Categories of fuzzy preorders, approximation operators and Alexandrov topologies. Journal of Intelligent and Fuzzy Systems 31 (2016), 1787-1793.
11. H. Lai \& D. Zhang: Fuzzy preorder and fuzzy topology. Fuzzy Sets and Systems 157 (2006), 1865-1885.
12. Z. Pawlak: Rough sets. Int. J. Comput. Inf. Sci. 11 (1982), 341-356.
13. \qquad : Rough probability. Bull. Pol. Acad. Sci. Math. 32 (1984), 607-615.
14. S.P. Tiwari \& A.K. Srivastava: Fuzzy rough sets, fuzzy preorders and fuzzy topologies. Fuzzy Sets and Systems 210 (2013), 63-68.
15. Z.M. Ma \& B.Q. Hu: Topological and lattice structures of L-fuzzy rough set determined by lower and upper sets. Information Sciences 218 (2013), 194-204.
${ }^{\text {a }}$ Mathematics Department, Gangneung-Wonju National University, Gangneung, 25457 , Korea
Email address: jumokoh@gwnu.ac.kr
${ }^{\text {b }}$ Mathematics Department, Gangneung-Wonju National University, Gangneung, 25457, Korea
Email address: yck@gwnu.ac.kr

[^0]: Received by the editors January 01, 2020. Accepted March 05, 2020.
 2010 Mathematics Subject Classification. 03E72, 54A40, 54B10.
 Key words and phrases. Alexandrov topologies, non-symmetric pseudo-metrics and lower approximation operators.
 This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.
 *Corresponding author.

