References
- O. Axelsson and B. Polman, Block preconditioning and domain decomposition methods. II, J. Comput. Appl. Math. 24 (1988), no. 1-2, 55-72. https://doi.org/10.1016/0377-0427(88)90343-3
- A. T. Barker, S. C. Brenner, E.-H. Park, and L.-Y. Sung, Two-level additive Schwarz preconditioners for a weakly over-penalized symmetric interior penalty method, J. Sci. Comput. 47 (2011), no. 1, 27-49. https://doi.org/10.1007/s10915-010-9419-5
- O. A. Bauchau, Parallel computation approaches for flexible multibody dynamics simulations, J. Franklin Inst. 347 (2010), no. 1, 53-68. https://doi.org/10.1016/j.jfranklin.2009.10.001
- S. C. Brenner, The condition number of the Schur complement in domain decomposition, Numer. Math. 83 (1999), no. 2, 187-203. https://doi.org/10.1007/s002110050446
- S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, third edition, Texts in Applied Mathematics, 15, Springer, New York, 2008. https://doi.org/10.1007/978-0-387-75934-0
- M. Brezina and P. Vanek, A black-box iterative solver based on a two-level Schwarz method, Computing 63 (1999), no. 3, 233-263. https://doi.org/10.1007/s006070050033
- M. Dryja and O. B. Widlund, An additive variant of the Schwarz alternating method in the case of many subregions, Technical Report 339, Department of Computer Science, Courant Institute, 1987.
- M. Dryja and O. B. Widlund, Domain decomposition algorithms with small overlap, SIAM J. Sci. Comput. 15 (1994), no. 3, 604-620. https://doi.org/10.1137/0915040
- X. Feng and O. A. Karakashian, Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems, SIAM J. Numer. Anal. 39 (2001), no. 4, 1343-1365. https://doi.org/10.1137/S0036142900378480
- R. Glowinski and P. Le Tallec, Augmented Lagrangian interpretation of the nonover-lapping Schwarz alternating method, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), 224-231, SIAM, Philadelphia, PA, 1990.
- J. Koko and T. Sassi, Augmented Lagrangian domain decomposition method for bonded structures, in Domain decomposition methods in science and engineering XXII, 551-558, Lect. Notes Comput. Sci. Eng., 104, Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-18827-0_56
- J. Kwak, T. Chun, S. Shin, and O. A. Bauchau, Domain decomposition approach to flexible multibody dynamics simulation, Comput. Mech. 53 (2014), no. 1, 147-158. https://doi.org/10.1007/s00466-013-0898-8
- P. Le Tallec and T. Sassi, Domain decomposition with nonmatching grids: augmented Lagrangian approach, Math. Comp. 64 (1995), no. 212, 1367-1396. https://doi.org/10.2307/2153360
- C.-O. Lee and E.-H. Park, A dual iterative substructuring method with a penalty term, Numer. Math. 112 (2009), no. 1, 89-113. https://doi.org/10.1007/s00211-008-0202-6
- C.-O. Lee and E.-H. Park, A dual iterative substructuring method with a penalty term in three dimensions, Comput. Math. Appl. 64 (2012), no. 9, 2787-2805. https://doi.org/10.1016/j.camwa.2012.04.011
- C.-O. Lee and E.-H. Park, A dual iterative substructuring method with a small penalty parameter, J. Korean Math. Soc. 54 (2017), no. 2, 461-477. https://doi.org/10.4134/JKMS.j160061
- Y. Saad, Iterative Methods for Sparse Linear Systems, second edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2003. https://doi.org/10.1137/1.9780898718003
- A. Toselli and O. Widlund, Domain Decomposition Methods-Algorithms and Theory, Springer Series in Computational Mathematics, 34, Springer-Verlag, Berlin, 2005. https://doi.org/10.1007/b137868