참고문헌
- Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994;74:139-162. https://doi.org/10.1152/physrev.1994.74.1.139
- Berndt C, Lillig CH, Flohe L. Redox regulation by glutathione needs enzymes. Front Pharmacol. 2014;5:168. https://doi.org/10.3389/fphar.2014.00168
- Wang P, Gao YM, Sun X, Guo N, Li J, Wang W, Yao LP, Fu YJ. Hepatoprotective effect of 2'-O-galloylhyperin against oxidative stressinduced liver damage through induction of Nrf2/ARE-mediated antioxidant pathway. Food Chem Toxicol. 2017;102:129-142. https://doi.org/10.1016/j.fct.2017.02.016
- Zitka O, Skalickova S, Gumulec J, Masarik M, Adam V, Hubalek J, Trnkova L, Kruseova J, Eckschlager T, Kizek R. Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett. 2012;4:1247-1253. https://doi.org/10.3892/ol.2012.931
-
Lin TA, Ke BJ, Cheng CS, Wang JJ, Wei BL, Lee CL. Red quinoa bran extracts protects against carbon tetrachloride-induced liver injury and fibrosis in mice via activation of antioxidative enzyme systems and blocking TGF-
${\beta}1$ pathway. Nutrients. 2019;11:395. https://doi.org/10.3390/nu11020395 - Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells. 2011;16:123-140. https://doi.org/10.1111/j.1365-2443.2010.01473.x
- Su C, Xia X, Shi Q, Song X, Fu J, Xiao C, Chen H, Lu B, Sun Z, Wu S, Yang S, Li X, Ye X, Song E, Song Y. Neohesperidin dihydrochalcone versus CCl4-induced hepatic injury through different mechanisms: the implication of free radical scavenging and Nrf2 activation. J Agric Food Chem. 2015;63:5468-5475. https://doi.org/10.1021/acs.jafc.5b01750
- Liu J, Sun H, Zhang A, Yan G, Han Y, Xue C, Zhou X, Shi H, Wang X. Serum pharmacochemistry combined with multiple data processing approach to screen the bioactive components and their metabolites in Mutan Cortex by ultra-performance liquid chromatography tandem mass spectrometry. Biomed Chromatogr. 2014;28:500-510. https://doi.org/10.1002/bmc.3060
- Lin MY, Lee YR, Chiang SY, Li YZ, Chen YS, Hsu CD, Liu YW. Cortex Moutan induces bladder cancer cell death via apoptosis and retards tumor growth in mouse bladders. Evid Based Complement Alternat Med. 2013;2013:207279.
- Oh GS, Pae HO, Oh H, Hong SG, Kim IK, Chai KY, Yun YG, Kwon TO, Chung HT. In vitro anti-proliferative effect of 1,2,3,4,6-penta-O-galloyl-beta-D-glucose on human hepatocellular carcinoma cell line, SK-HEP-1 cells. Cancer Lett. 2001;174:17-24. https://doi.org/10.1016/S0304-3835(01)00680-2
- Chen G, Zhang L, Zhu Y. Determination of glycosides and sugars in Moutan Cortex by capillary electrophoresis with electrochemical detection. J Pharm Biomed Anal. 2006;41:129-134. https://doi.org/10.1016/j.jpba.2005.11.001
-
Li J, Li Y, Pan S, Zhang L, He L, Niu Y. Paeonol attenuates ligationinduced periodontitis in rats by inhibiting osteoclastogenesis via regulating Nrf2/
$NF-{\kappa}B$ /NFATc1 signaling pathway. Biochimie. 2019;156:129-137. https://doi.org/10.1016/j.biochi.2018.09.004 - Li XY, Xu JD, Zhou SS, Kong M, Xu YY, Zou YT, Tang Y, Zhou L, Xu MZ, Xu J, Li SL. Time segment scanning-based quasi-multiple reaction monitoring mode by ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry for quantitative determination of herbal medicines: Moutan Cortex, a case study. J Chromatogr A. 2018;1581-1582:33-42. https://doi.org/10.1016/j.chroma.2018.10.047
- Feng RB, Wang Y, He C, Yang Y, Wan JB. Gallic acid, a natural polyphenol, protects against tert-butyl hydroperoxide- induced hepatotoxicity by activating ERK-Nrf2-Keap1-mediated antioxidative response. Food Chem Toxicol. 2018;119:479-488. https://doi.org/10.1016/j.fct.2017.10.033
-
Peng Z, Gong X, Yang Y, Huang L, Zhang Q, Zhang P, Wan R, Zhang B. Hepatoprotective effect of quercetin against LPS/d-GalN induced acute liver injury in mice by inhibiting the IKK/
$NF-{\kappa}B$ and MAPK signal pathways. Int Immunopharmacol. 2017;52:281-289. https://doi.org/10.1016/j.intimp.2017.09.022 - Chen F, Mo K, Zhang Q, Fei S, Zu Y, Yang L. A novel approach for distillation of paeonol and simultaneous extraction of paeoniflorin by microwave irradiation using an ionic liquid solution as the reaction medium. Sep Purif Technol. 2017;183:73-82. https://doi.org/10.1016/j.seppur.2017.03.069
- Li YL, Li J, Wang NL, Yao XS. Flavonoids and a new polyacetylene from Bidens parviflora Willd. Molecules. 2008;13:1931-1941. https://doi.org/10.3390/molecules13081931
- Li WH, Chang ST, Chang SC, Chang HT. Isolation of antibacterial diterpenoids from Cryptomeria japonica bark. Nat Prod Res. 2008;22:1085-1093. https://doi.org/10.1080/14786410802267510
- He L, She Z. Molecular structure identification and properties of gallic acid from galla chinensis. Chem Fiber Text Techol. 2017;46:5-9.
-
Sun X, Wang P, Yao LP, Wang W, Gao YM, Zhang J, Fu YJ. Paeonol alleviated acute alcohol-induced liver injury via SIRT1/Nrf2/
$NF-{\kappa}B$ signaling pathway. Environ Toxicol Pharmacol. 2018;60:110-117. https://doi.org/10.1016/j.etap.2018.04.016 - Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3:768-780. https://doi.org/10.1038/nrc1189
- Pinheiro-Sant'ana HM, Guinazi M, Oliveira Dda S, Della Lucia CM, Reis Bde L, Brandao SC. Method for simultaneous analysis of eight vitamin E isomers in various foods by high performance liquid chromatography and fluorescence detection. J Chromatogr A. 2011;1218:8496-8502. https://doi.org/10.1016/j.chroma.2011.09.067
- Yen GC, Duh PD, Tsai HL. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002;79:307-313. https://doi.org/10.1016/S0308-8146(02)00145-0
- Ho HH, Chang CS, Ho WC, Liao SY, Wu CH, Wang CJ. Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-kappaB activity and downregulation of PI3K/AKT/small GTPase signals. Food Chem Toxicol. 2010;48:2508-2516. https://doi.org/10.1016/j.fct.2010.06.024
-
Hsiang CY, Hseu YC, Chang YC, Kumar KJ, Ho TY, Yang HL. Toona sinensis and its major bioactive compound gallic acid inhibit LPS-induced inflammation in nuclear
$factor-{\kappa}B$ transgenic mice as evaluated by in vivo bioluminescence imaging. Food Chem. 2013;136:426-434. https://doi.org/10.1016/j.foodchem.2012.08.009 - Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86:715-748. https://doi.org/10.1146/annurev-biochem-061516-045037
- Wei S, Chi J, Zhou M, Li R, Li Y, Luo J, Kong L. Anti-inflammatory lindenane sesquiterpeniods and dimers from Sarcandra glabra and its upregulating AKT/Nrf2/HO-1 signaling mechanism. Ind Crops Prod. 2019;137:367-376. https://doi.org/10.1016/j.indcrop.2019.05.041
- Chen B, Lu Y, Chen Y, Cheng J. The role of Nrf2 in oxidative stressinduced endothelial injuries. J Endocrinol. 2015;225:R83-R99.
-
Zhuang Y, Ma Q, Guo Y, Sun L. Protective effects of rambutan (Nephelium lappaceum) peel phenolics on
$H_{2}O_{2}$ -induced oxidative damages in HepG2 cells and D-galactose-induced aging mice. Food Chem Toxicol. 2017;108(Pt B):554-562. https://doi.org/10.1016/j.fct.2017.01.022 - Lyu Z, Ji X, Chen G, An B. Atractylodin ameliorates lipopolysaccharide and D-galactosamine-induced acute liver failure via the suppression of inflammation and oxidative stress. Int Immunopharmacol. 2019;72:348-357. https://doi.org/10.1016/j.intimp.2019.04.005
- Auten RL, Davis JM. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatr Res. 2009;66:121-127. https://doi.org/10.1203/PDR.0b013e3181a9eafb
- Weber LW, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 2003;33:105-136. https://doi.org/10.1080/713611034
- Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4:89-96.
- Johnston DE, Kroening C. Mechanism of early carbon tetrachloride toxicity in cultured rat hepatocytes. Pharmacol Toxicol. 1998;83:231-239. https://doi.org/10.1111/j.1600-0773.1998.tb01474.x
- Vuda M, D'Souza R, Upadhya S, Kumar V, Rao N, Kumar V, Boillat C, Mungli P. Hepatoprotective and antioxidant activity of aqueous extract of Hybanthus enneaspermus against CCl4-induced liver injury in rats. Exp Toxicol Pathol. 2012;64:855-859. https://doi.org/10.1016/j.etp.2011.03.006
- Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yamamoto M, Nabeshima Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236:313-322. https://doi.org/10.1006/bbrc.1997.6943
- Chun KS, Kundu J, Kundu JK, Surh YJ. Targeting Nrf2-Keap1 signaling for chemoprevention of skin carcinogenesis with bioactive phytochemicals. Toxicol Lett. 2014;229:73-84. https://doi.org/10.1016/j.toxlet.2014.05.018
- Keum YS. Regulation of the Keap1/Nrf2 system by chemopreventive sulforaphane: implications of posttranslational modifications. Ann N Y Acad Sci. 2011;1229:184-189. https://doi.org/10.1111/j.1749-6632.2011.06092.x
- Lou Y, Guo Z, Zhu Y, Kong M, Zhang R, Lu L, Wu F, Liu Z, Wu J. Houttuynia cordata Thunb. and its bioactive compound 2-undecanone significantly suppress benzo(a)pyrene-induced lung tumorigenesis by activating the Nrf2-HO-1/NQO-1 signaling pathway. J Exp Clin Cancer Res. 2019;38:242. https://doi.org/10.1186/s13046-019-1255-3
- Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284:13291-13295. https://doi.org/10.1074/jbc.R900010200
- Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal. 2010;13:1763-1811. https://doi.org/10.1089/ars.2009.3074
- Bucolo C, Drago F, Maisto R, Romano GL, D'Agata V, Maugeri G, Giunta S. Curcumin prevents high glucose damage in retinal pigment epithelial cells through ERK1/2-mediated activation of the Nrf2/HO-1 pathway. J Cell Physiol. 2019;234:17295-17304. https://doi.org/10.1002/jcp.28347
- Sharath Babu GR, Anand T, Ilaiyaraja N, Khanum F, Gopalan N. Pelargonidin modulates Keap1/Nrf2 pathway gene expression and ameliorates citrinin-induced oxidative stress in HepG2 cells. Front Pharmacol. 2017;8:868. https://doi.org/10.3389/fphar.2017.00868
- Dinkova-Kostova AT, Talalay P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys. 2010;501:116-123. https://doi.org/10.1016/j.abb.2010.03.019
피인용 문헌
- Ethyl Acetate Fraction of Abelmoschus manihot (L.) Medic Flowers Exerts Inhibitory Effects Against Oxidative Stress in H 2 O 2 -Induced HepG2 Cells and D-Galactose-Induced Agin vol.24, pp.9, 2020, https://doi.org/10.1089/jmf.2021.k.0053