DOI QR코드

DOI QR Code

Magnetic Resonance Imaging: Historical Overview, Technical Developments, and Clinical Applications

  • Jahng, Geon-Ho (Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University) ;
  • Park, Soonchan (Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University) ;
  • Ryu, Chang-Woo (Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University) ;
  • Cho, Zang-Hee (Neuroscience Convergence Center, Korea University)
  • 투고 : 2020.05.29
  • 심사 : 2020.09.01
  • 발행 : 2020.09.30

초록

The authors congratulate the cerebrations for the 30 years of the Korean Society of Medical Physics (http://www.ksmp.or.kr/). The paper is published to recognize the anniversary. Geon-Ho Jahng invited Professor Z. H. Cho to join to submit this manuscript because he has been one of the leaders in the field of magnetic resonance imaging (MRI) during the last 40 years. In this review, we describe the development and clinical histories of MRI internationally and domestically. We also discuss diffusion and perfusion MRI, molecular imaging using MRI and MR spectroscopy (MRS), and the hybrid systems, such as positron emission tomography-MRI (PET-MRI), MR-guided focused ultrasound surgery (MRgFUS), and MRI-guided linear accelerators (MRI-LINACs). In each part, we discuss the historical evolution of the developments, technical developments, and clinical applications.

키워드

과제정보

The research was supported by the National Research Foundation of Korea grant funded by Ministry of Science and ICT (No. 2020R1A2C1004749, GHJ), Republic of Korea.

참고문헌

  1. Jackson JA, Langham WH. Whole-body NMR spectrometer. Rev Sci Instrum. 1968;39:510-513. https://doi.org/10.1063/1.1683420
  2. Damadian R. Tumor detection by nuclear magnetic resonance. Science. 1971;171:1151-1153. https://doi.org/10.1126/science.171.3976.1151
  3. Lauterbur PC. Image formation by induced local interactions. Examples employing nuclear magnetic resonance. 1973. Clin Orthop Relat Res. 1989;(244):3-6.
  4. Lauterbur PC. Magnetic resonance zeugmatography. Pure Appl Chem. 1974;40:149-157. https://doi.org/10.1351/pac197440010149
  5. Mansfield P, Grannell P. "Diffraction" and microscopy in solids and liquids by NMR. Phys Rev B. 1975;12:3618. https://doi.org/10.1103/PhysRevB.12.3618
  6. Damadian R, Minkoff L, Goldsmith M, Stanford M, Koutcher J. Field focusing nuclear magnetic resonance (FONAR): visualization of a tumor in a live animal. Science. 1976;194:1430-1432. https://doi.org/10.1126/science.1006309
  7. Cho ZH, Kim YB, Han JY, Kim NB, Hwang SI, Kim SJ, et al. Altered T2* relaxation time of the hippocampus in major depressive disorder: implications of ultra-high field magnetic resonance imaging. J Psychiatr Res. 2010;44:881-886. https://doi.org/10.1016/j.jpsychires.2010.02.014
  8. Cho ZH, Lee YB, Kang CK, Yang JW, Jung IH, Park CA, et al. Microvascular imaging of asymptomatic MCA stenoocclusive patients using ultra-high-field 7T MRI. J Neurol. 2013;260:144-150. https://doi.org/10.1007/s00415-012-6604-5
  9. Cho ZH, Son YD, Kim HK, Kim KN, Oh SH, Han JY, et al. A fusion PET-MRI system with a high-resolution research tomograph-PET and ultra-high field 7.0 T-MRI for the molecular-genetic imaging of the brain. Proteomics. 2008;8: 1302-1323. https://doi.org/10.1002/pmic.200700744
  10. Kim M, Kim KE, Jeong SW, Hwang SW, Jo H, Lee J, et al. Effects of the ultra-high-frequency electrical field radiofrequency device on mouse skin: a histologic and molecular study. Plast Reconstr Surg. 2016;138:248e-255e. https://doi.org/10.1097/PRS.0000000000002364
  11. Oh SH, Chung JY, In MH, Zaitsev M, Kim YB, Speck O, et al. Distortion correction in EPI at ultra-high-field MRI using PSF mapping with optimal combination of shift detection dimension. Magn Reson Med. 2012;68:1239-1246. https://doi.org/10.1002/mrm.23317
  12. Richards K, Calamante F, Tournier JD, Kurniawan ND, Sadeghian F, Retchford AR, et al. Mapping somatosensory connectivity in adult mice using diffusion MRI tractography and super-resolution track density imaging. Neuroimage. 2014;102 Pt 2:381-392. https://doi.org/10.1016/j.neuroimage.2014.07.048
  13. Hahn EL. Spin echoes. Phys Rev. 1950;80:580. https://doi.org/10.1103/PhysRev.80.580
  14. Hahn EL. Nuclear induction due to free larmor precession. Phys Rev. 1950;77:297. https://doi.org/10.1103/PhysRev.77.297.2
  15. Hajnal JV, De Coene B, Lewis PD, Baudouin CJ, Cowan FM, Pennock JM, et al. High signal regions in normal white matter shown by heavily T2-weighted CSF nulled IR sequences. J Comput Assist Tomogr. 1992;16:506-513. https://doi.org/10.1097/00004728-199207000-00002
  16. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87:9868-9872. https://doi.org/10.1073/pnas.87.24.9868
  17. Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology. 1997;204:272-277. https://doi.org/10.1148/radiology.204.1.9205259
  18. Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med. 1986; 3:823-833. https://doi.org/10.1002/mrm.1910030602
  19. Ahn CB, Kim JH, Cho ZH. High-speed spiral-scan echo planar NMR imaging-I. IEEE Trans Med Imaging. 1986;5: 2-7. https://doi.org/10.1109/TMI.1986.4307732
  20. Meyer CH, Hu BS, Nishimura DG, Macovski A. Fast spiral coronary artery imaging. Magn Reson Med. 1992;28:202-213. https://doi.org/10.1002/mrm.1910280204
  21. Hennig J, Friedburg H. Clinical applications and methodological developments of the RARE technique. Magn Reson Imaging. 1988;6:391-395. https://doi.org/10.1016/0730-725X(88)90475-4
  22. Kiefer B, Grassner J, I-lausman K. Image acquisition in a second with half fourier acquisition single shot turbo spin echo. J Magn Reson Imaging. 1994;4(P):86.
  23. Oshio K, Feinberg DA. GRASE (Gradient- and spin-echo) imaging: a novel fast MRI technique. Magn Reson Med. 1991;20:344-349. https://doi.org/10.1002/mrm.1910200219
  24. Nayak KS, Hargreaves BA, Hu BS, Nishimura DG, Pauly JM, Meyer CH. Spiral balanced steady-state free precession cardiac imaging. Magn Reson Med. 2005;53:1468-1473. https://doi.org/10.1002/mrm.20489
  25. Mansfield P. Multi-planar image formation using NMR spin echoes. J Phys C. 1977;10:L55. https://doi.org/10.1088/0022-3719/10/3/004
  26. Du J, Lu A, Block WF, Thornton FJ, Grist TM, Mistretta CA. Time-resolved undersampled projection reconstruction magnetic resonance imaging of the peripheral vessels using multi-echo acquisition. Magn Reson Med. 2005;53: 730-734. https://doi.org/10.1002/mrm.20404
  27. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38:591-603. https://doi.org/10.1002/mrm.1910380414
  28. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952-962. https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
  29. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47: 1202-1210. https://doi.org/10.1002/mrm.10171
  30. Hamilton J, Franson D, Seiberlich N. Recent advances in parallel imaging for MRI. Prog Nucl Magn Reson Spectrosc. 2017;101:71-95. https://doi.org/10.1016/j.pnmrs.2017.04.002
  31. Feinberg DA, Setsompop K. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson. 2013;229:90-100. https://doi.org/10.1016/j.jmr.2013.02.002
  32. Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G. Use of multicoil arrays for separation of signal from multiple slices simultaneously excited. J Magn Reson Imaging. 2001;13:313-317. https://doi.org/10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W
  33. Feinberg DA, Reese TG, Wedeen VJ. Simultaneous echo refocusing in EPI. Magn Reson Med. 2002;48:1-5. https://doi.org/10.1002/mrm.10227
  34. Panda A, Mehta BB, Coppo S, Jiang Y, Ma D, Seiberlich N, et al. Magnetic resonance fingerprinting-an overview. Curr Opin Biomed Eng. 2017;3:56-66. https://doi.org/10.1016/j.cobme.2017.11.001
  35. Ma D, Gulani V, Seiberlich N, Liu K, Sunshine JL, Duerk JL, et al. Magnetic resonance fingerprinting. Nature. 2013;495:187-192. https://doi.org/10.1038/nature11971
  36. Tsao J. Ultrafast imaging: principles, pitfalls, solutions, and applications. J Magn Reson Imaging. 2010;32:252-266. https://doi.org/10.1002/jmri.22239
  37. Saini S, Stark DD, Rzedzian RR, Pykett IL, Rummeny E, Hahn PF, et al. Forty-millisecond MR imaging of the abdomen at 2.0 T. Radiology. 1989;173:111-116. https://doi.org/10.1148/radiology.173.1.2780996
  38. Doyle M, Rzedzian R, Mansfield P, Coupland RE. Dynamic NMR cardiac imaging in a piglet. Br J Radiol. 1983;56: 925-930. https://doi.org/10.1259/0007-1285-56-672-925
  39. Glover GH, Lee AT. Motion artifacts in fMRI: comparison of 2DFT with PR and spiral scan methods. Magn Reson Med. 1995;33:624-635. https://doi.org/10.1002/mrm.1910330507
  40. Muthurangu V, Lurz P, Critchely JD, Deanfield JE, Taylor AM, Hansen MS. Real-time assessment of right and left ventricular volumes and function in patients with congenital heart disease by using high spatiotemporal resolution radial k-t SENSE. Radiology. 2008;248:782-791. https://doi.org/10.1148/radiol.2482071717
  41. Nayak KS, Cunningham CH, Santos JM, Pauly JM. Realtime cardiac MRI at 3 tesla. Magn Reson Med. 2004;51: 655-660. https://doi.org/10.1002/mrm.20053
  42. Yu AC, Badve C, Ponsky LE, Pahwa S, Dastmalchian S, Rogers M, et al. Development of a combined MR fingerprinting and diffusion examination for prostate cancer. Radiology. 2017;283:729-738. https://doi.org/10.1148/radiol.2017161599
  43. Cloos MA, Knoll F, Zhao T, Block KT, Bruno M, Wiggins GC, et al. Multiparametric imaging with heterogeneous radiofrequency fields. Nat Commun. 2016;7:12445. https://doi.org/10.1038/ncomms12445
  44. Hamilton JI, Jiang Y, Chen Y, Ma D, Lo WC, Griswold M, et al. MR fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density. Magn Reson Med. 2017;77:1446-1458. https://doi.org/10.1002/mrm.26216
  45. Su P, Mao D, Liu P, Li Y, Pinho MC, Welch BG, et al. Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL. Magn Reson Med. 2017;78:1812-1823. https://doi.org/10.1002/mrm.26587
  46. Christen T, Pannetier NA, Ni WW, Qiu D, Moseley ME, Schuff N, et al. MR vascular fingerprinting: a new approach to compute cerebral blood volume, mean vessel radius, and oxygenation maps in the human brain. Neuroimage. 2014;89:262-270. https://doi.org/10.1016/j.neuroimage.2013.11.052
  47. Einstein A. Investigations on the theory of the Brownian movement. Chelmsford: Courier Corporation; 1956.
  48. Le Bihan D, Breton E, inventor; General Electric CGR SA, assignee. Method to measure the molecular diffusion and/or perfusion parameters of live tissue. United States patent US4809701A. 1989 Mar 7.
  49. Howe FA, Filler AG, Bell BA, Griffiths JR. Magnetic resonance neurography. Magn Reson Med. 1992;28:328-338. https://doi.org/10.1002/mrm.1910280215
  50. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401-407. https://doi.org/10.1148/radiology.161.2.3763909
  51. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103:247-254. https://doi.org/10.1006/jmrb.1994.1037
  52. Niendorf T, Dijkhuizen RM, Norris DG, van Lookeren Campagne M, Nicolay K. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med. 1996;36:847-857. https://doi.org/10.1002/mrm.1910360607
  53. Assaf Y, Freidlin RZ, Rohde GK, Basser PJ. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med. 2004;52:965-978. https://doi.org/10.1002/mrm.20274
  54. Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med. 2003;50:1077-1088. https://doi.org/10.1002/mrm.10609
  55. Tuch DS. Q-ball imaging. Magn Reson Med. 2004;52:1358-1372. https://doi.org/10.1002/mrm.20279
  56. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G, et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage. 2008;41:1267-1277. https://doi.org/10.1016/j.neuroimage.2008.03.036
  57. Tournier JD, Calamante F, Gadian DG, Connelly A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage. 2004;23:1176-1185. https://doi.org/10.1016/j.neuroimage.2004.07.037
  58. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61:1000-1016. https://doi.org/10.1016/j.neuroimage.2012.03.072
  59. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of nongaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005;53:1432-1440. https://doi.org/10.1002/mrm.20508
  60. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44:625-632. https://doi.org/10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
  61. Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45:265-269. https://doi.org/10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
  62. Jones DK. Tractography gone wild: probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI. IEEE Trans Med Imaging. 2008;27:1268-1274. https://doi.org/10.1109/TMI.2008.922191
  63. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186-198. https://doi.org/10.1038/nrn2575
  64. Sotak CH. The role of diffusion tensor imaging in the evaluation of ischemic brain injury - a review. NMR Biomed. 2002;15:561-569. https://doi.org/10.1002/nbm.786
  65. Alexander AL, Hurley SA, Samsonov AA, Adluru N, Hosseinbor AP, Mossahebi P, et al. Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect. 2011;1:423-446. https://doi.org/10.1089/brain.2011.0071
  66. Baliyan V, Das CJ, Sharma R, Gupta AK. Diffusion weighted imaging: technique and applications. World J Radiol. 2016;8:785-798. https://doi.org/10.4329/wjr.v8.i9.785
  67. Zhang Y, Schuff N, Jahng GH, Bayne W, Mori S, Schad L, et al. Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology. 2007;68:13-19. https://doi.org/10.1212/01.wnl.0000250326.77323.01
  68. Zhang Y, Du AT, Hayasaka S, Jahng GH, Hlavin J, Zhan W, et al. Patterns of age-related water diffusion changes in human brain by concordance and discordance analysis. Neurobiol Aging. 2010;31:1991-2001. https://doi.org/10.1016/j.neurobiolaging.2008.10.009
  69. Jahng GH, Xu S, Weiner MW, Meyerhoff DJ, Park S, Schuff N. DTI studies in patients with Alzheimer's disease, mild cognitive impairment, or normal cognition with evaluation of the intrinsic background gradients. Neuroradiology. 2011;53:749-762. https://doi.org/10.1007/s00234-011-0845-3
  70. Jahng GH, Xu S. Local susceptibility causes diffusion alterations in patients with Alzheimer's disease and mild cognitive impairment. Brain Imaging Behav. 2012;6:426-436. https://doi.org/10.1007/s11682-012-9155-6
  71. Jahng GH, Xu S, Kim MJ. Mapping of distributions of a local b-matrix cross-term strength using diffusion tensor MRI in patients with Alzheimer's disease. Med Phys. 2012; 39:6324-6331. https://doi.org/10.1118/1.4754655
  72. Charles-Edwards EM, deSouza NM. Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging. 2006;6:135-143. https://doi.org/10.1102/1470-7330.2006.0021
  73. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med. 2004;22:275-282.
  74. Larsen EH. [August Krogh (1874-1949): 1920 nobel prize]. Ugeskr Laeger. 2007;169:2878. Danish.
  75. Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB, et al. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med. 1988;6:164-174. https://doi.org/10.1002/mrm.1910060205
  76. Koretsky AP. Early development of arterial spin labeling to measure regional brain blood flow by MRI. Neuroimage. 2012;62:602-607. https://doi.org/10.1016/j.neuroimage.2012.01.005
  77. Jahng GH, Li KL, Ostergaard L, Calamante F. Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J Radiol. 2014;15:554-577. https://doi.org/10.3348/kjr.2014.15.5.554
  78. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med. 1996;36:715-725. https://doi.org/10.1002/mrm.1910360510
  79. Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging. 1997;7:91-101. https://doi.org/10.1002/jmri.1880070113
  80. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 1998;40:383-396. https://doi.org/10.1002/mrm.1910400308
  81. Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous f low-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med. 2008;60:1488-1497. https://doi.org/10.1002/mrm.21790
  82. Keir SL, Wardlaw JM. Systematic review of diffusion and perfusion imaging in acute ischemic stroke. Stroke. 2000; 31:2723-2731. https://doi.org/10.1161/01.STR.31.11.2723
  83. Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology. 2002;223:11-29. https://doi.org/10.1148/radiol.2231010594
  84. Ostergaard L, Sorensen AG, Chesler DA, Weisskoff RM, Koroshetz WJ, Wu O, et al. Combined diffusion-weighted and perfusion-weighted f low heterogeneity magnetic resonance imaging in acute stroke. Stroke. 2000;31:1097-1103. https://doi.org/10.1161/01.STR.31.5.1097
  85. Lee SJ, Kim JH, Kim YM, Lee GK, Lee EJ, Park IS, et al. Perfusion MR imaging in gliomas: comparison with histologic tumor grade. Korean J Radiol. 2001;2:1-7. https://doi.org/10.3348/kjr.2001.2.1.1
  86. Brix G, Kiessling F, Lucht R, Darai S, Wasser K, Delorme S, et al. Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med. 2004;52:420-429. https://doi.org/10.1002/mrm.20161
  87. Choi HS, Kim AH, Ahn SS, Shin NY, Kim J, Lee SK. Glioma grading capability: comparisons among parameters from dynamic contrast-enhanced MRI and ADC value on DWI. Korean J Radiol. 2013;14:487-492. https://doi.org/10.3348/kjr.2013.14.3.487
  88. Ahn SS, Shin NY, Chang JH, Kim SH, Kim EH, Kim DW, et al. Prediction of methylguanine methyltransferase promoter methylation in glioblastoma using dynamic contrast-enhanced magnetic resonance and diffusion tensor imaging. J Neurosurg. 2014;121:367-373. https://doi.org/10.3171/2014.5.JNS132279
  89. Suh CH, Kim HS, Choi YJ, Kim N, Kim SJ. Prediction of pseudoprogression in patients with glioblastomas using the initial and final area under the curves ratio derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. AJNR Am J Neuroradiol. 2013;34:2278-2286. https://doi.org/10.3174/ajnr.A3634
  90. Kim SM, Kim MJ, Rhee HY, Ryu CW, Kim EJ, Petersen ET, et al. Regional cerebral perfusion in patients with Alzheimer's disease and mild cognitive impairment: effect of APOE epsilon4 allele. Neuroradiology. 2013;55:25-34. https://doi.org/10.1007/s00234-012-1077-x
  91. Johnson NA, Jahng GH, Weiner MW, Miller BL, Chui HC, Jagust WJ, et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology. 2005;234:851-859. https://doi.org/10.1148/radiol.2343040197
  92. Choi YJ, Kim HS, Jahng GH, Kim SJ, Suh DC. Pseudoprogression in patients with glioblastoma: added value of arterial spin labeling to dynamic susceptibility contrast perfusion MR imaging. Acta Radiol. 2013;54:448-454. https://doi.org/10.1177/0284185112474916
  93. Wang J, Licht DJ, Jahng GH, Liu CS, Rubin JT, Haselgrove J, et al. Pediatric perfusion imaging using pulsed arterial spin labeling. J Magn Reson Imaging. 2003;18:404-413. https://doi.org/10.1002/jmri.10372
  94. Bottomley PA. Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci. 1987;508:333-348. https://doi.org/10.1111/j.1749-6632.1987.tb32915.x
  95. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R. Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med. 1989;9:79-93. https://doi.org/10.1002/mrm.1910090110
  96. Ordidge RJ, Connelly A, Lohman JA. Image-selected in vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy. J Magn Reson (1969). 1986;66: 283-294. https://doi.org/10.1016/0022-2364(86)90031-4
  97. Bottomley PA, Foster TB, Darrow RD. Depth-resolved surface-coil spectroscopy (DRESS) for in vivo 1H, 31P, and 13C NMR. J Magn Reson (1969). 1984;59:338-342. https://doi.org/10.1016/0022-2364(84)90179-3
  98. Thrippleton MJ, Edden RA, Keeler J. Suppression of strong coupling artefacts in J-spectra. J Magn Reson. 2005;174:97-109. https://doi.org/10.1016/j.jmr.2005.01.012
  99. Gruber S, Pinker K, Riederer F, Chmelik M, Stadlbauer A, Bittsansky M, et al. Metabolic changes in the normal ageing brain: consistent findings from short and long echo time proton spectroscopy. Eur J Radiol. 2008;68:320-327. https://doi.org/10.1016/j.ejrad.2007.08.038
  100. Skoch A, Jiru F, Bunke J. Spectroscopic imaging: basic principles. Eur J Radiol. 2008;67:230-239. https://doi.org/10.1016/j.ejrad.2008.03.003
  101. Haase A, Frahm J, Hanicke W, Matthaei D. 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol. 1985;30:341-344. https://doi.org/10.1088/0031-9155/30/4/008
  102. Maudsley AA, Domenig C, Govind V, Darkazanli A, Studholme C, Arheart K, et al. Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med. 2009;61:548-559. https://doi.org/10.1002/mrm.21875
  103. Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30:672-679. https://doi.org/10.1002/mrm.1910300604
  104. Provencher SW. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 2001;14:260-264. https://doi.org/10.1002/nbm.698
  105. Reynolds G, Wilson M, Peet A, Arvanitis TN. An algorithm for the automated quantitation of metabolites in in vitro NMR signals. Magn Reson Med. 2006;56:1211-1219. https://doi.org/10.1002/mrm.21081
  106. Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D. Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med. 2001;31:269-286. https://doi.org/10.1016/S0010-4825(01)00006-3
  107. Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, et al. Java-based graphical user interface for the MRUI quantitation package. MAGMA. 2001;12:141-152. https://doi.org/10.1007/BF02668096
  108. van Zijl PC, Yadav NN. Chemical exchange saturation transfer (CEST): what is in a name and what isn't? Magn Reson Med. 2011;65:927-948. https://doi.org/10.1002/mrm.22761
  109. Vinogradov E, Sherry AD, Lenkinski RE. CEST: from basic principles to applications, challenges and opportunities. J Magn Reson. 2013;229:155-172. https://doi.org/10.1016/j.jmr.2012.11.024
  110. Park JE, Jahng GH, Jeong HK. Amide proton transfer imaging in clinics: basic concepts and current and future use in brain tumors and stroke. J Korean Soc Radiol. 2016;75:419-433. https://doi.org/10.3348/jksr.2016.75.6.419
  111. Jahng GH, Oh JH. Physical modeling of chemical exchange saturation transfer imaging. Prog Med Phys. 2017; 28:135-143. https://doi.org/10.14316/pmp.2017.28.4.135
  112. Oh JH, Kim HG, Woo DC, Jeong HK, Lee SY, Jahng GH. Chemical-exchange-saturation-transfer magnetic resonance imaging to map gamma-aminobutyric acid, glutamate, myoinositol, glycine, and asparagine: phantom experiments. J Korean Phys Soc. 2017;70:545-553. https://doi.org/10.3938/jkps.70.545
  113. Jahng GH, Choi W, Chung JJ, Kim ST, Rhee HY. Mapping exchangeable protons to monitor protein alterations in the brain of an Alzheimer's disease mouse model by using MRI. Curr Alzheimer Res. 2018;15:1343-1353. https://doi.org/10.2174/1567205015666180911143518
  114. Yoo CH, Oh J, Park S, Ryu CW, Kwon YK, Jahng GH. Comparative evaluation of the polynomial and spline fitting methods for the B0 correction of CEST MRI data acquired from human brains. Int J Imaging Syst Technol. 2019;29: 272-282. https://doi.org/10.1002/ima.22313
  115. Oh JH, Kim HG, Woo DC, Rhee SJ, Lee SY, Jahng GH. Preliminary phantom experiments to map amino acids and neurotransmitters using MRI. Prog Med Phys. 2018;29:29-41. https://doi.org/10.14316/pmp.2018.29.1.29
  116. Park S, Jang J, Oh JH, Ryu CW, Jahng GH. Assessment of the cerebrospinal fluid effect on the chemical exchange saturation transfer map obtained from the full Z-spectrum in the elderly human brain. Prog Med Phys. 2019;30: 139-149. https://doi.org/10.14316/pmp.2019.30.4.139
  117. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R. Cerebral metabolism in man after acute stroke: new observations using localized proton NMR spectroscopy. Magn Reson Med. 1989;9:126-131. https://doi.org/10.1002/mrm.1910090115
  118. Arnold DL, Matthews PM, Francis G, Antel J. Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med. 1990;14:154-159. https://doi.org/10.1002/mrm.1910140115
  119. Miller BL, Moats RA, Shonk T, Ernst T, Woolley S, Ross BD. Alzheimer disease: depiction of increased cerebral myoinositol with proton MR spectroscopy. Radiology. 1993; 187:433-437. https://doi.org/10.1148/radiology.187.2.8475286
  120. Jahng GH, Oh J, Lee DW, Kim HG, Rhee HY, Shin W, et al. Glutamine and glutamate complex, as measured by functional magnetic resonance spectroscopy, alters during face-name association task in patients with mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis. 2016;52:145-159. https://doi.org/10.3233/JAD-150877
  121. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hanicke W, Sauter R, et al. Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology. 1989; 172:541-548. https://doi.org/10.1148/radiology.172.2.2748837
  122. Sciarra A, Panebianco V, Ciccariello M, Salciccia S, Cattarino S, Lisi D, et al. Value of magnetic resonance spectroscopy imaging and dynamic contrast-enhanced imaging for detecting prostate cancer foci in men with prior negative biopsy. Clin Cancer Res. 2010;16:1875-1883. https://doi.org/10.1158/1078-0432.CCR-09-2195
  123. Haddadin IS, McIntosh A, Meisamy S, Corum C, Styczynski Snyder AL, Powell NJ, et al. Metabolite quantification and high-field MRS in breast cancer. NMR Biomed. 2009; 22:65-76. https://doi.org/10.1002/nbm.1217
  124. Zhao X, Wen Z, Zhang G, Huang F, Lu S, Wang X, et al. Three-dimensional turbo-spin-echo amide proton transfer MR imaging at 3-Tesla and its application to highgrade human brain tumors. Mol Imaging Biol. 2013;15:114-122. https://doi.org/10.1007/s11307-012-0563-1
  125. Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, et al. Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med. 2011;17:130-134. https://doi.org/10.1038/nm.2268
  126. Wang M, Hong X, Chang CF, Li Q, Ma B, Zhang H, et al. Simultaneous detection and separation of hyperacute intracerebral hemorrhage and cerebral ischemia using amide proton transfer MRI. Magn Reson Med. 2015;74:42-50. https://doi.org/10.1002/mrm.25690
  127. Du la A N, A rl i ng haus L R, Dor tch R D, Dewey BE, Whisenant JG, Ayers GD, et al. Amide proton transfer imaging of the breast at 3 T: establishing reproducibility and possible feasibility assessing chemotherapy response. Magn Reson Med. 2013;70:216-224. https://doi.org/10.1002/mrm.24450
  128. Jia G, Abaza R, Williams JD, Zynger DL, Zhou J, Shah ZK, et al. Amide proton transfer MR imaging of prostate cancer: a preliminary study. J Magn Reson Imaging. 2011;33: 647-654. https://doi.org/10.1002/jmri.22480
  129. Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A. 2008;105:2266-2270. https://doi.org/10.1073/pnas.0707666105
  130. Yamamoto S, Kuroda K, Senda M. Scintillator selection for MR-compatible gamma detectors. IEEE Trans Nucl Sci. 2003;50:1683-1685. https://doi.org/10.1109/TNS.2003.817375
  131. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med. 2006;47:639-647.
  132. Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Med Phys. 1998;25:2046-2053. https://doi.org/10.1118/1.598392
  133. Wagenknecht G, Kaiser HJ, Mottaghy FM, Herzog H. MRI for attenuation correction in PET: methods and challenges. MAGMA. 2013;26:99-113. https://doi.org/10.1007/s10334-012-0353-4
  134. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Bornert P, et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38:138-152. https://doi.org/10.1007/s00259-010-1603-1
  135. Beyer T, Lassen ML, Boellaard R, Delso G, Yaqub M, Sattler B, et al. Investigating the state-of-the-art in wholebody MR-based attenuation correction: an intra-individual, inter-system, inventory study on three clinical PET/MR systems. MAGMA. 2016;29:75-87. https://doi.org/10.1007/s10334-015-0505-4
  136. Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd'hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in wholebody PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520-526. https://doi.org/10.2967/jnumed.108.054726
  137. Nuyts J, Dupont P, Stroobants S, Benninck R, Mortelmans L, Suetens P. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Trans Med Imaging. 1999;18:393-403. https://doi.org/10.1109/42.774167
  138. Johansson A, Karlsson M, Nyholm T. CT substitute derived from MRI sequences with ultrashort echo time. Med Phys. 2011;38:2708-2714. https://doi.org/10.1118/1.3578928
  139. King AP, Buerger C, Tsoumpas C, Marsden PK, Schaeffter T. Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator. Med Image Anal. 2012;16:252-264. https://doi.org/10.1016/j.media.2011.08.003
  140. Uribe S, Muthurangu V, Boubertakh R, Schaeffter T, Razavi R, Hill DL, et al. Whole-heart cine MRI using real-time respiratory self-gating. Magn Reson Med. 2007;57:606-613. https://doi.org/10.1002/mrm.21156
  141. Erlandsson K, Dickson J, Arridge S, Atkinson D, Ourselin S, Hutton BF. MR Imaging-guided partial volume correction of PET data in PET/MR imaging. PET Clin. 2016;11:161-177. https://doi.org/10.1016/j.cpet.2015.09.002
  142. Bai B, Li Q, Leahy RM. Magnetic resonance-guided positron emission tomography image reconstruction. Semin Nucl Med. 2013;43:30-44. https://doi.org/10.1053/j.semnuclmed.2012.08.006
  143. Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR. "Anatometabolic" tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med. 1993;34:1190-1197.
  144. Kirchner J, Sawicki LM, Deuschl C, Gruneisen J, Beiderwellen K, Lauenstein TC, et al. 18 F-FDG PET/MR imaging in patients with suspected liver lesions: value of liverspecific contrast agent Gadobenate dimeglumine. PLoS One. 2017;12:e0180349. https://doi.org/10.1371/journal.pone.0180349
  145. Baumann T, Rottenburger C, Nicolas G, Wild D. Gastroenteropancreatic neuroendocrine tumours (GEP-NET) - Imaging and staging. Best Pract Res Clin Endocrinol Metab. 2016;30:45-57. https://doi.org/10.1016/j.beem.2016.01.003
  146. Chen BB, Tien YW, Chang MC, Cheng MF, Chang YT, Wu CH, et al. PET/MRI in pancreatic and periampullary cancer: correlating diffusion-weighted imaging, MR spectroscopy and glucose metabolic activity with clinical stage and prognosis. Eur J Nucl Med Mol Imaging. 2016;43:1753-1764. https://doi.org/10.1007/s00259-016-3356-y
  147. Eiber M, Weirich G, Holzapfel K, Souvatzoglou M, Haller B, Rauscher I, et al. Simultaneous 68Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol. 2016;70:829-836. https://doi.org/10.1016/j.eururo.2015.12.053
  148. Miller-Thomas MM, Benzinger TL. Neurologic applications of PET/MR imaging. Magn Reson Imaging Clin N Am. 2017;25:297-313. https://doi.org/10.1016/j.mric.2016.12.003
  149. Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:257-262. https://doi.org/10.1016/j.jalz.2011.03.004
  150. Lee KK, Salamon N. [18F] fluorodeoxyglucose-positronemission tomography and MR imaging coregistration for presurgical evaluation of medically refractory epilepsy. AJNR Am J Neuroradiol. 2009;30:1811-1816. https://doi.org/10.3174/ajnr.A1637
  151. Kransdorf MJ, Bridges MD. Current developments and recent advances in musculoskeletal tumor imaging. Semin Musculoskelet Radiol. 2013;17:145-155. https://doi.org/10.1055/s-0033-1343070
  152. Abgral R, Dweck MR, Trivieri MG, Robson PM, Karakatsanis N, Mani V, et al. Clinical utility of combined FDG-PET/MR to assess myocardial disease. JACC Cardiovasc Imaging. 2017;10:594-597. https://doi.org/10.1016/j.jcmg.2016.02.029
  153. Dubinsky TJ, Cuevas C, Dighe MK, Kolokythas O, Hwang JH. High-intensity focused ultrasound: current potential and oncologic applications. AJR Am J Roentgenol. 2008; 190:191-199. https://doi.org/10.2214/AJR.07.2671
  154. Cline HE, Schenck JF, Hynynen K, Watkins RD, Souza SP, Jolesz FA. MR-guided focused ultrasound surgery. J Comput Assist Tomogr. 1992;16:956-965. https://doi.org/10.1097/00004728-199211000-00024
  155. Hynynen K, Darkazanli A, Unger E, Schenck JF. MRIguided noninvasive ultrasound surgery. Med Phys. 1993; 20:107-115. https://doi.org/10.1118/1.597093
  156. Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, et al. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med. 1995;34:814-823. https://doi.org/10.1002/mrm.1910340606
  157. Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging. 2008;27:376-390. https://doi.org/10.1002/jmri.21265
  158. Lenard ZM, McDannold NJ, Fennessy FM, Stewart EA, Jolesz FA, Hynynen K, et al. Uterine leiomyomas: MR imaging-guided focused ultrasound surgery--imaging predictors of success. Radiology. 2008;249:187-194. https://doi.org/10.1148/radiol.2491071600
  159. Gianfelice D, Gupta C, Kucharczyk W, Bret P, Havill D, Clemons M. Palliative treatment of painful bone metastases with MR imaging--guided focused ultrasound. Radiology. 2008;249:355-363. https://doi.org/10.1148/radiol.2491071523
  160. Benedict SH, De Meerleer G, Orton CG, Stancanello J. Point/counterpoint. High intensity focused ultrasound may be superior to radiation therapy for the treatment of early stage prostate cancer. Med Phys. 2011;38:3909-3912. https://doi.org/10.1118/1.3561500
  161. Hynynen K, Pomeroy O, Smith DN, Huber PE, McDannold NJ, Kettenbach J, et al. MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology. 2001;219:176-185. https://doi.org/10.1148/radiology.219.1.r01ap02176
  162. Park J, Aryal M, Vykhodtseva N, Zhang YZ, McDannold N. Evaluation of permeability, doxorubicin delivery, and drug retention in a rat brain tumor model after ultrasound-induced blood-tumor barrier disruption. J Control Release. 2017;250:77-85. https://doi.org/10.1016/j.jconrel.2016.10.011
  163. Lipsman N, Schwartz ML, Huang Y, Lee L, Sankar T, Chapman M, et al. MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol. 2013;12:462-468. https://doi.org/10.1016/S1474-4422(13)70048-6
  164. Magara A, Buhler R, Moser D, Kowalski M, Pourtehrani P, Jeanmonod D. First experience with MR-guided focused ultrasound in the treatment of Parkinson's disease. J Ther Ultrasound. 2014;2:11. https://doi.org/10.1186/2050-5736-2-11
  165. Jung HH, Kim SJ, Roh D, Chang JG, Chang WS, Kweon EJ, et al. Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-of-concept study. Mol Psychiatry. 2015;20:1205-1211. https://doi.org/10.1038/mp.2014.154
  166. Kim M, Kim CH, Jung HH, Kim SJ, Chang JW. Treatment of major depressive disorder via magnetic resonance-guided focused ultrasound surgery. Biol Psychiatry. 2018; 83:e17-e18.
  167. Jeanmonod D, Werner B, Morel A, Michels L, Zadicario E, Schiff G, et al. Transcranial magnetic resonance imaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg Focus. 2012;32:E1.
  168. Saenz DL, Yan Y, Christensen N, Henzler MA, Forrest LJ, Bayouth JE, et al. Characterization of a 0.35T MR system for phantom image quality stability and in vivo assessment of motion quantification. J Appl Clin Med Phys. 2015;16:30-40.
  169. Yun J, St Aubin J, Rathee S, Fallone BG. Brushed permanent magnet DC MLC motor operation in an external magnetic field. Med Phys. 2010;37:2131-2134. https://doi.org/10.1118/1.3392165
  170. St Aubin J, Steciw S, Fallone BG. Effect of transverse magnetic fields on a simulated in-line 6 MV linac. Phys Med Biol. 2010;55:4861-4869. https://doi.org/10.1088/0031-9155/55/16/015
  171. St Aubin J, Santos DM, Steciw S, Fallone BG. Effect of longitudinal magnetic fields on a simulated in-line 6 MV linac. Med Phys. 2010;37:4916-4923. https://doi.org/10.1118/1.3481513
  172. Bielajew AF. The effect of strong longitudinal magnetic fields on dose deposition from electron and photon beams. Med Phys. 1993;20:1171-1179. https://doi.org/10.1118/1.597149
  173. Raaijmakers AJ, Raaymakers BW, Lagendijk JJ. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue-air interfaces in a lateral magnetic field due to returning electrons. Phys Med Biol. 2005;50:1363-1376. https://doi.org/10.1088/0031-9155/50/7/002
  174. Liney GP, Whelan B, Oborn B, Barton M, Keall P. MRIlinear accelerator radiotherapy systems. Clin Oncol (R Coll Radiol). 2018;30:686-691. https://doi.org/10.1016/j.clon.2018.08.003
  175. Emmerich J, Laun FB, Pfaffenberger A, Schilling R, Denoix M, Maier F, et al. Technical note: on the size of susceptibility-induced MR image distortions in prostate and cervix in the context of MR-guided radiation therapy. Med Phys. 2018;45:1586-1593. https://doi.org/10.1002/mp.12785
  176. Liney GP, Dong B, Begg J, Vial P, Zhang K, Lee F, et al. Technical note: experimental results from a prototype high-field inline MRI-linac. Med Phys. 2016;43:5188. https://doi.org/10.1118/1.4961395
  177. Burke B, Wachowicz K, Fallone BG, Rathee S. Effect of radiation induced current on the quality of MR images in an integrated linac-MR system. Med Phys. 2012;39:6139-6147. https://doi.org/10.1118/1.4752422
  178. Palacios MA, Bohoudi O, Bruynzeel AME, van Sorsen de Koste JR, Cobussen P, Slotman BJ, et al. Role of daily plan adaptation in MR-guided stereotactic ablative radiation therapy for adrenal metastases. Int J Radiat Oncol Biol Phys. 2018;102:426-433. https://doi.org/10.1016/j.ijrobp.2018.06.002
  179. Kontaxis C, Bol GH, Lagendijk JJ, Raaymakers BW. A new methodology for inter- and intrafraction plan adaptation for the MR-linac. Phys Med Biol. 2015;60:7485-7497. https://doi.org/10.1088/0031-9155/60/19/7485
  180. Rudra S, Jiang N, Rosenberg SA, Olsen JR, Roach MC, Wan L, et al. Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer. Cancer Med. 2019;8:2123-2132. https://doi.org/10.1002/cam4.2100
  181. Murray J, Tree AC. Prostate cancer- advantages and disadvantages of MR-guided RT. Clin Transl Radiat Oncol. 2019;18:68-73. https://doi.org/10.1016/j.ctro.2019.03.006
  182. Werensteijn-Honingh AM, Kroon PS, Winkel D, Aalbers EM, van Asselen B, Bol GH, et al. Feasibility of stereotactic radiotherapy using a 1.5 T MR-linac: multi-fraction treatment of pelvic lymph node oligometastases. Radiother Oncol. 2019;134:50-54. https://doi.org/10.1016/j.radonc.2019.01.024
  183. Winkel D, Bol GH, Kroon PS, van Asselen B, Hackett SS, Werensteijn-Honingh AM, et al. Adaptive radiotherapy: The Elekta Unity MR-linac concept. Clin Transl Radiat Oncol. 2019;18:54-59. https://doi.org/10.1016/j.ctro.2019.04.001