References
- Adhikari, S. (2011), "Doubly spectral stochastic finite-element method for linear structural dynamics", J. Aerosp. Eng., 24(3), 264-276. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000070
- Adhikari, S. and Pascual, B. (2016), "The 'damping effect'in the dynamic response of stochastic oscillators", Probabilistic Eng. Mech., 44, 2-17. https://doi.org/10.1016/j.probengmech.2015.09.017
- Bathe, K.J. and Dvorkin, E.N. (1985), "A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation", J. Numerical Methods Eng., 21(2), 367-383. https://doi.org/10.1002/nme.1620210213
- Berveiller, M., Sudret, B. and Lemaire, M. (2006), "Stochastic finite element: a non intrusive approach by regression", European Journal of Computational Mechanics/Revue Europeenne de Mecanique Numerique, 15(1-3), 81-92. https://doi.org/10.3166/remn.15.81-92
- Blatman, G. and Sudret, B. (2011), "Adaptive sparse polynomial chaos expansion based on least angle regression", J. Comput. Phys., 230(6), 2345-2367. https://doi.org/10.1016/j.jcp.2010.12.021.
- Chantrasmi, T., Doostan, A. and Iaccarino, G. (2009), "Pade-Legendre approximants for uncertainty analysis with discontinuous response surfaces", J. Comput. Phys., 228(19), 7159-7180. https://doi.org/10.1016/j.jcp.2009.06.024
- Chevreuil, M. and Nouy, A. (2012), "Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics", J. Numerical Methods Eng., 89(2), 241-268. https://doi.org/10.1002/nme.3249
- Fox, R. and Kapoor, M. (1968), "Rates of change of eigenvalues and eigenvectors", AIAA J., 6(12), 2426-2429. https://doi.org/10.2514/3.5008
- Galal, O., El-Tahan, W., El-Tawil, M. and Mahmoud, A. (2008), "Spectral SFEM analysis of structures with stochastic parameters under stochastic excitation", Struct. Eng. Mech., 28(3), 281-294. https://doi.org/10.12989/sem.2008.28.3.281
- Ghanem, R. and Ghosh, D. (2007), "Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition", J. Numerical Methods Eng., 72(4), 486-504. https://doi.org/10.1002/nme.2025
- Ghanem, R.G. and Spanos, P.D. (2003), Stochastic Finite Elements: A Spectral Approach, Courier Corporation, MA, USA.
- Hurtado, J. and Barbat, A.H. (1998), "Monte Carlo techniques in computational stochastic mechanics", Arch. Comput. Methods Eng., 5(1), 3. https://doi.org/10.1007/BF02736747
- Hussein, A., El-Tawil, M., El-Tahan, W. and Mahmoud, A. (2008), "Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM)", Struct. Eng. Mech., 28(2), 129-152. https://doi.org/10.12989/sem.2008.28.2.129.
- Jacquelin, E., Adhikari, S., Friswell, M. and Sinou, J.-J. (2016), "Role of roots of orthogonal polynomials in the dynamic response of stochastic systems", J. Eng. Mech., 142(8), 06016004. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001102
- Jacquelin, E., Adhikari, S., Sinou, J.-J. and Friswell, M.I. (2014), "Polynomial chaos expansion and steady-state response of a class of random dynamical systems", J. Eng. Mech., 141(4), 04014145. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000856
- Jacquelin, E., Adhikari, S., Sinou, J.J. and Friswell, M.I. (2015), "Polynomial chaos expansion in structural dynamics: Accelerating the convergence of the first two statistical moment sequences", J. Sound Vib., 356, 144-154. https://doi.org/10.1016/j.jsv.2015.06.039
- Jacquelin, E., Dessombz, O., Sinou, J.J., Adhikari, S. and Friswell, M.I. (2017), "Polynomial chaos-based extended Pade expansion in structural dynamics", J. Numerical Methods Eng., 111(12), 1170-1191. https://doi.org/10.1002/nme.5497
- Kleiber, M. and Hien, T.D. (1992), The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation, Wiley, New Jersey, USA.
- Kundu, A., Adhikari, S. and Friswell, M. (2014), "Stochastic finite elements of discretely parameterized random systems on domains with boundary uncertainty", J. Numerical Methods Eng., 100(3), 183-221. https://doi.org/10.1002/nme.4733
- Nouy, A. (2007), "A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations", Comput. Methods Appl. Mech. Eng., 196(45-48), 4521-4537. https://doi.org/10.1016/j.cma.2007.05.016.
- Pagnacco, E., Sarrouy, E., Sampaio, R. and de Cursi, E.S. (2017), "Pitfalls in the frequency response represented onto Polynomial Chaos for random SDOF mechanical systems", Applied Mathematical Modelling, 52, 626-647. https://doi.org/10.1016/j.apm.2017.08.004
- Papadrakakis, M. and Papadopoulos, V. (1996), "Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation", Comput. Methods. Appl. Mech. Eng., 134(3-4), 325-340. https://doi.org/10.1016/0045-7825(95)00978-7
- Pascual, B. and Adhikari, S. (2012), "A reduced polynomial chaos expansion method for the stochastic finite element analysis", Sadhana, 37(3), 319-340. https://doi.org/10.1007/s12046-012-0085-1.
- Sakamoto, S. and Ghanem, R. (2002), "Simulation of multi-dimensional non-Gaussian non-stationary random fields", Probabilistic Eng. Mech., 17(2), 167-176. https://doi.org/10.1016/S0266-8920(01)00037-6.
- Sepahvand, K. (2016), "Spectral stochastic finite element vibration analysis of fiber-reinforced composites with random fiber orientation", Compos. Struct., 145, 119-128. https://doi.org/10.1016/j.compstruct.2016.02.069.
- Sinou, J.J. and Jacquelin, E. (2015), "Influence of Polynomial Chaos expansion order on an uncertain asymmetric rotor system response", Mech. Syst. Signal Process., 50, 718-731. https://doi.org/10.1016/j.ymssp.2014.05.046.
- Smith, R.C. (2013), Uncertainty Quantification: Theory, Implementation, and Applications, Siam, PH, USA.
- Stefanou, G. (2009), "The stochastic finite element method: past, present and future", Computer Methods Appl. Mech. Eng., 198(9-12), 1031-1051. https://doi.org/10.1016/j.cma.2008.11.007
- Xiu, D. and Hesthaven, J.S. (2005), "High-order collocation methods for differential equations with random inputs", SIAM Journal on Scientific Computing, 27(3), 1118-1139. https://doi.org/10.1137/040615201
- Xiu, D. and Karniadakis, G.E. (2002), "The Wiener--Askey polynomial chaos for stochastic differential equations", SIAM J. Sci. Comput., 24(2), 619-644. https://doi.org/10.1137/S1064827501387826
- Yamazaki, F., Shinozuka, M. and Dasgupta, G. (1988), "Neumann expansion for stochastic finite element analysis", J. Eng. Mech., 114(8), 1335-1354 https://doi.org/10.1061/(ASCE)0733-9399(1988)114:8(1335)