DOI QR코드

DOI QR Code

A natural frequency sensitivity-based stabilization in spectral stochastic finite element method for frequency response analysis

  • Lee, Gil-Yong (Department of Mechanical Engineering, KAIST) ;
  • Jin, Seung-Seop (Sustainable Infrastructure Research Center, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Park, Yong-Hwa (Department of Mechanical Engineering, KAIST)
  • Received : 2019.12.22
  • Accepted : 2020.02.25
  • Published : 2020.08.10

Abstract

In applying the spectral stochastic finite element methods to the frequency response analysis, the conventional methods are known to give unstable and inaccurate results near the natural frequencies. To address this issue, a new sensitivity based stabilized formulation for stochastic frequency response analysis is proposed in this paper. The main difference over the conventional spectral methods is that the polynomials of random variables are applied to both numerator and denominator in approximating the harmonic response solution. In order to reflect the resonance behavior of the structure, the denominator polynomials is constructed by utilizing the natural frequency sensitivity and the random mode superposition. The numerator is approximated by applying a polynomial chaos expansion, and its coefficients are obtained through the Galerkin or the spectral projection method. Through various numerical studies, it is seen that the proposed method improves accuracy, especially in the vicinities of structural natural frequencies compared to conventional spectral methods.

Keywords

References

  1. Adhikari, S. (2011), "Doubly spectral stochastic finite-element method for linear structural dynamics", J. Aerosp. Eng., 24(3), 264-276. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000070
  2. Adhikari, S. and Pascual, B. (2016), "The 'damping effect'in the dynamic response of stochastic oscillators", Probabilistic Eng. Mech., 44, 2-17. https://doi.org/10.1016/j.probengmech.2015.09.017
  3. Bathe, K.J. and Dvorkin, E.N. (1985), "A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation", J. Numerical Methods Eng., 21(2), 367-383. https://doi.org/10.1002/nme.1620210213
  4. Berveiller, M., Sudret, B. and Lemaire, M. (2006), "Stochastic finite element: a non intrusive approach by regression", European Journal of Computational Mechanics/Revue Europeenne de Mecanique Numerique, 15(1-3), 81-92. https://doi.org/10.3166/remn.15.81-92
  5. Blatman, G. and Sudret, B. (2011), "Adaptive sparse polynomial chaos expansion based on least angle regression", J. Comput. Phys., 230(6), 2345-2367. https://doi.org/10.1016/j.jcp.2010.12.021.
  6. Chantrasmi, T., Doostan, A. and Iaccarino, G. (2009), "Pade-Legendre approximants for uncertainty analysis with discontinuous response surfaces", J. Comput. Phys., 228(19), 7159-7180. https://doi.org/10.1016/j.jcp.2009.06.024
  7. Chevreuil, M. and Nouy, A. (2012), "Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics", J. Numerical Methods Eng., 89(2), 241-268. https://doi.org/10.1002/nme.3249
  8. Fox, R. and Kapoor, M. (1968), "Rates of change of eigenvalues and eigenvectors", AIAA J., 6(12), 2426-2429. https://doi.org/10.2514/3.5008
  9. Galal, O., El-Tahan, W., El-Tawil, M. and Mahmoud, A. (2008), "Spectral SFEM analysis of structures with stochastic parameters under stochastic excitation", Struct. Eng. Mech., 28(3), 281-294. https://doi.org/10.12989/sem.2008.28.3.281
  10. Ghanem, R. and Ghosh, D. (2007), "Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition", J. Numerical Methods Eng., 72(4), 486-504. https://doi.org/10.1002/nme.2025
  11. Ghanem, R.G. and Spanos, P.D. (2003), Stochastic Finite Elements: A Spectral Approach, Courier Corporation, MA, USA.
  12. Hurtado, J. and Barbat, A.H. (1998), "Monte Carlo techniques in computational stochastic mechanics", Arch. Comput. Methods Eng., 5(1), 3. https://doi.org/10.1007/BF02736747
  13. Hussein, A., El-Tawil, M., El-Tahan, W. and Mahmoud, A. (2008), "Solution of randomly excited stochastic differential equations with stochastic operator using spectral stochastic finite element method (SSFEM)", Struct. Eng. Mech., 28(2), 129-152. https://doi.org/10.12989/sem.2008.28.2.129.
  14. Jacquelin, E., Adhikari, S., Friswell, M. and Sinou, J.-J. (2016), "Role of roots of orthogonal polynomials in the dynamic response of stochastic systems", J. Eng. Mech., 142(8), 06016004. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001102
  15. Jacquelin, E., Adhikari, S., Sinou, J.-J. and Friswell, M.I. (2014), "Polynomial chaos expansion and steady-state response of a class of random dynamical systems", J. Eng. Mech., 141(4), 04014145. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000856
  16. Jacquelin, E., Adhikari, S., Sinou, J.J. and Friswell, M.I. (2015), "Polynomial chaos expansion in structural dynamics: Accelerating the convergence of the first two statistical moment sequences", J. Sound Vib., 356, 144-154. https://doi.org/10.1016/j.jsv.2015.06.039
  17. Jacquelin, E., Dessombz, O., Sinou, J.J., Adhikari, S. and Friswell, M.I. (2017), "Polynomial chaos-based extended Pade expansion in structural dynamics", J. Numerical Methods Eng., 111(12), 1170-1191. https://doi.org/10.1002/nme.5497
  18. Kleiber, M. and Hien, T.D. (1992), The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation, Wiley, New Jersey, USA.
  19. Kundu, A., Adhikari, S. and Friswell, M. (2014), "Stochastic finite elements of discretely parameterized random systems on domains with boundary uncertainty", J. Numerical Methods Eng., 100(3), 183-221. https://doi.org/10.1002/nme.4733
  20. Nouy, A. (2007), "A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations", Comput. Methods Appl. Mech. Eng., 196(45-48), 4521-4537. https://doi.org/10.1016/j.cma.2007.05.016.
  21. Pagnacco, E., Sarrouy, E., Sampaio, R. and de Cursi, E.S. (2017), "Pitfalls in the frequency response represented onto Polynomial Chaos for random SDOF mechanical systems", Applied Mathematical Modelling, 52, 626-647. https://doi.org/10.1016/j.apm.2017.08.004
  22. Papadrakakis, M. and Papadopoulos, V. (1996), "Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation", Comput. Methods. Appl. Mech. Eng., 134(3-4), 325-340. https://doi.org/10.1016/0045-7825(95)00978-7
  23. Pascual, B. and Adhikari, S. (2012), "A reduced polynomial chaos expansion method for the stochastic finite element analysis", Sadhana, 37(3), 319-340. https://doi.org/10.1007/s12046-012-0085-1.
  24. Sakamoto, S. and Ghanem, R. (2002), "Simulation of multi-dimensional non-Gaussian non-stationary random fields", Probabilistic Eng. Mech., 17(2), 167-176. https://doi.org/10.1016/S0266-8920(01)00037-6.
  25. Sepahvand, K. (2016), "Spectral stochastic finite element vibration analysis of fiber-reinforced composites with random fiber orientation", Compos. Struct., 145, 119-128. https://doi.org/10.1016/j.compstruct.2016.02.069.
  26. Sinou, J.J. and Jacquelin, E. (2015), "Influence of Polynomial Chaos expansion order on an uncertain asymmetric rotor system response", Mech. Syst. Signal Process., 50, 718-731. https://doi.org/10.1016/j.ymssp.2014.05.046.
  27. Smith, R.C. (2013), Uncertainty Quantification: Theory, Implementation, and Applications, Siam, PH, USA.
  28. Stefanou, G. (2009), "The stochastic finite element method: past, present and future", Computer Methods Appl. Mech. Eng., 198(9-12), 1031-1051. https://doi.org/10.1016/j.cma.2008.11.007
  29. Xiu, D. and Hesthaven, J.S. (2005), "High-order collocation methods for differential equations with random inputs", SIAM Journal on Scientific Computing, 27(3), 1118-1139. https://doi.org/10.1137/040615201
  30. Xiu, D. and Karniadakis, G.E. (2002), "The Wiener--Askey polynomial chaos for stochastic differential equations", SIAM J. Sci. Comput., 24(2), 619-644. https://doi.org/10.1137/S1064827501387826
  31. Yamazaki, F., Shinozuka, M. and Dasgupta, G. (1988), "Neumann expansion for stochastic finite element analysis", J. Eng. Mech., 114(8), 1335-1354 https://doi.org/10.1061/(ASCE)0733-9399(1988)114:8(1335)