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Introduction 

Genomic characterization of the somatic landscape is essential for the robust clinical eval-
uation and classification of pediatric leukemias [1]. Somatic variants can inform both di-
agnosis and prognostication, as well as guide therapy decisions [2]. The development 
and validation of new targeted therapies for pediatric leukemias is dependent on the avail-
ability of pre-clinical models capable of recapitulation of the disease. Patient-derived or-
thotopic xenograft models (PDX) are routinely used in disease modeling for preclinical 
drug evaluation [3]. Although several studies have been conducted to understand the sta-
bility and suitability of PDX models, the majority of these efforts have focused on adult-de-
rived leukemias and the characterization of single nucleotide variants (SNVs) [4]. 

Chromosomal rearrangements generating gene fusions and other structural variants 

Acute leukemia represents the most common pediatric malignancy comprising diverse sub-
types with varying prognosis and treatment outcomes. New and targeted treatment op-
tions are warranted for this disease. Patient-derived xenograft (PDX) models are increas-
ingly being used for preclinical testing of novel treatment modalities. A novel approach in-
volving targeted error-corrected RNA sequencing using ArcherDX HemeV2 kit was em-
ployed to compare 25 primary pediatric acute leukemia samples and their corresponding 
PDX samples. A comparison of the primary samples and PDX samples revealed a high con-
cordance between single nucleotide variants and gene fusions whereas other complex 
structural variants were not as consistent. The presence of gene fusions representing the 
major driver mutations at similar allelic frequencies in PDX samples compared to primary 
samples and over multiple passages confirms the utility of PDX models for preclinical drug 
testing. Characterization and tracking of these novel cryptic fusions and exonal variants in 
PDX models is critical in assessing response to potential new therapies. 
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(StVs) are more common in pediatric malignancies compared to 
adults [5]. These StVs and SNVs have demonstrated a different 
landscape for diagnostic, prognostic, and therapeutic value. Of 
note, pediatric leukemias are genomically heterogenous and re-
quire a broad spectrum of molecular biology techniques to fully 
characterize. Additionally, StVs are difficult to identify via short 
read DNA-seq approaches, and recent research has demonstrated 
the power and utility of identifying SNVs in RNA molecules [6]. 

Acute lymphoblastic leukemia (ALL) is the most common type 
of cancer in children and adolescents. ALL represents 20% of all 
cancers diagnosed in individuals with less than 20 years of age [7]. 
In general, survival in ALL has improved significantly over the past 
40 years with more than 90% of patients now surviving. Acute my-
eloid leukemia (AML) is the second most common type of leuke-
mia diagnosed in children. AML has an overall survival rate that is 
less than 65%. In all children with AML, and many with ALL, sur-
vival comes at the expense of intensive chemotherapy. New strate-
gies are needed, as are preclinical models that reflect the clinical 
disease. 

The goal of this study was to characterize complex genomic vari-
ants in pediatric leukemias and describe and monitor these vari-
ants in preclinical PDX models in comparison with the primary 
samples. The ability to track complex genomic lesions in primary 
samples and across passage in PDX lines is essential in ensuring 
that that the model can be used for biologic and therapeutic mod-
eling. RNA next generation sequencing (NGS) techniques enable 
a sensitive and broad approach for analyzing complex genomic le-
sions and identifying clinically relevant novel somatic mutations 
associated with pediatric leukemias. 

Methods 

Patient samples and consent 
All samples used in this study were procured by the Nemours Bio-
bank following written informed consent. For majority of samples, 
leukemic cells were isolated from human bone marrow aspirates 
with the exception of NTPL-59 and NTPL-109, which were iso-
lated from apheresis products by Ficoll density gradient centrifu-
gation and provided to us under an Institutional Review Board ap-
proved protocol (Nemours Office of Human Subjects Protection 
IRB# 267207). Summary of the subject’s characteristics are pre-
sented in Table 1. 

Generation of PDX models 
PDX models were generated as described previously [8] using a 
protocol approved by the Nemours Institutional Animal Care and 
Use Committee. Leukemic cells from patient samples were injected 

into immune-deficient NSG-B2m mice (stock no. 010636, Jackson 
Laboratories, Bar Harbor, ME, USA) via the tail vein. Disease pro-
gression was examined by determination of the percentage of hu-
man leukemic cells in mouse peripheral blood by flow cytometry. 
Mice were closely monitored for experimental endpoints such as 
increased leukemic burden, weight loss greater than 20% body 
weight, hunched back, and impaired mobility. Mice meeting end 
point criteria were euthanized using a method consistent with the 
guidelines of the American Veterinary Medical Association. Leuke-
mic cells were isolated from the femurs and spleen post euthanasia 
and used for serial transplantation in a new cohort of mice. Bioau-
thentication and validation of PDX sample with matching primary 
sample was performed by subjecting the DNA samples to AmpFIS-
TR Identifiler PCR Amplification Kit (Applied Biosystems, Foster 
City, CA, USA).

Error-corrected sequencing library preparation and 
sequencing 
To optimize detection of structural and copy number variants in 
RNA we prepared RNA–error-corrected sequencing libraries us-
ing the ArcherDX (Boulder, CO, USA) FusionPlex HemeV2 Kit 
(catalog no. AB0012) per manufacturer’s protocols. Total RNA 
was extracted using RNeasy Mini Kit (Qiagen, Hilden, Germany). 
Nucleic acid quantity and quality was then assessed using the Agi-
lent (Santa Clara, CA, USA) TapeStation 4200 following the man-
ufacturer’s protocol and using the High Sensitivity RNA Screen 
Tape (catalog no. 5067-5579). cDNA was made from 50 ng of 
RNA using the QIAseq kit. Each library was sequenced on the Il-

Table 1. Summary of leukemic samples utilized

Patient characteristic AML ALL
No. 5 20
Age (yr), median (range) 10 (1.5-14) 5.5 (1-16)
Sex
  Male 40 55
  Female 60 45
Race
  Caucasian 60 35
  African American 0 25
  Hispanic 20 20
Samples collected at diagnosis 80 95
Cytogenetically normal (by karyotype 

analysis)
0 55

Bone marrow origin 100 90
Peripheral blood origin 0 10
Average leukemic blast percentage 76 78

Values are presented as percentage unless otherwise indicated.
AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia.
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lumina NextSeq platform (San Diego, CA, USA). The gene fusion 
data produced by the Archer panel was initially correlated with di-
agnostic fluorescence in situ hybridization data available for each 
primary sample.  

Bioinformatics 
The data was processed via ArcherDX Analysis platform (v5.1.3), 
hosted in the cloud by Amazon Web Services, including fastq trim-
ming, read deduplication, genome alignment, and variant detec-
tion and annotation. The analysis pipeline contains the following 
applications: ABRA [9], bamaddrg, bcftools, bedtools, blast [10], 
bowtie2 [11], bwa, EMBOSS, fastqc, freeBayes [12], Lofreq [13], 
MiXCR [14], Muscle, samtools, VEP [15], Velvet [16], HTSeq 
[17], complete-striped-smith-waterman-library, JBrowse [18], 
JQuery DataTables, Django Solo, and plot.js. 

Fastq files were analyzed via fastqc for library quality, and error 
corrected reads (hamming distance of 2) were aligned to the ge-
nome build hg19 using BWA and bowtie2, and alignment files 
were processed via GATK best practices [19]. SNVs and short In-
Dels ( ≤ 20 bp) were detected from the genomic alignments 
(forced reference mapping) by freeBayes and Lofreq, whereas 
large structural variants and cryptic fusions were detected via de 
novo assembly approaches. A minimum of three reads per unique 
molecular barcode (UMI) was required for the downstream pro-
cess of de-duplication and error-correction [20]. Variants were fil-
tered based on depth of error-corrected sequencing bins, mini-
mum of 3, that supported the call. All regions in which variants 
called required a total read depth > 100 × , and a minimal base 
quality score (phred) of 20 was applied. The ExAC database was 
used to annotate common variants. 

Variant allele frequencies (VAF) were calculated for SNVs based 
on number reads mapped to that location supporting the alterna-
tive allele versus the total number of reads mapped to that genome 
location. VAFs for StVs are calculated by analyzing the number of 
reads supporting the wild type sequence/junction, compared to 
the number of reads supporting the novel junction. R statistics was 
used for making scatter plots, specifically ggplot2 [21]. Alignment 
files (bam) were visualized via integrative genome browser (IGV). 
The fastq data is publicly available via short read archives under 
the following accession number (will add upon acceptance of 
manuscript). 

Results 

Comparison of RNA StVs and SNVs between primary and 
PDX AML samples 
To determine the concordance of RNA variants between primary 

and PDX samples for pediatric AML, a targeted RNA sequencing 
panel approach (HemeV2; ArcherDx) was utilized. In this report, 
we analyzed 5 AML primary-PDX sample pairs, and in total 31 al-
lelic specific SNVs were identified with the following distribution: 
1 frameshift, 11 missense, 2 splice region and 17 untranslated re-
gion (UTR) variants (Supplementary Table 1). Five UTR variants 
were present at a VAF of 1 in both primary and PDX AML sam-
ples. The absolute change in VAFs between primary and PDX 
samples was less than 0.2 for 27 SNVs. A few variants increased in 
VAF in the PDX (MYC, CDKN2A, and NOTCH1), other variants 
reduced in VAF in PDX samples (CCND3 and ABL2) (Fig. 1A, 
Supplementary Table 1). 

VAFs for all RNA StVs including gene fusions and alternative exon 
usage variants were graphed between the primary and PDX AML 
samples and results are displayed (Fig. 1B). Four unique gene fu-
sions (KMT2A-MLLT1, KMT2A-MLLT3, NUP-98-NSD1, and the 
reciprocal NSD1-NUP98) were identified in the primary AML sam-
ples and PDX samples. Additionally, 5 exon duplications/deletions 
were identified in CEBPA and IRF4 (Supplementary Table 2). 

Multiple retained introns (n = 14) were identified in the 5 pri-
mary and PDX AML samples in the following genes: ZCCHC7, 
ABL1, JAK2, IRF8, TAL1, CEBPG, ETV6, KMT2A, MLLT10, 
KLF2, and PRDM16 (Supplementary Table 2). The SNVs were 
more concordant between primary and PDX samples compared 
to StVs (Pearson correlation coefficient, 0.91; p =  5.12e-13 and 
0.43; p =  0.036 respectively). Among the StVs, fusions were iden-
tified at similar VAFs in primary and PDX samples, whereas the al-
ternative exon usage variants showed greater variability. Interest-
ingly, the 2 AML samples with KMT2A gene rearrangements 
(NTPL-146 and NTPL-377) showed higher level of concordance 
between VAFs for StVs as well as SNVs. 

Comparison of RNA StVs and SNVs between primary and 
PDX T-ALL and B-ALL samples 
To determine the concordance of RNA variants between primary 
and PDX samples for pediatric ALL, samples target RNA sequenc-
ing approach was utilized. The correlation coefficients of VAF be-
tween primary and PDX T-cell ALL (T-ALL) samples identified 
across 3 primary and PDX T-ALL samples were similar between 
SNVs and StVs (Pearson correlation coefficient, 0.88; p =  6.12e-
10 and 0.73; p =  0.003 respectively) (Fig. 2). In total, 25 allelic 
specific RNA SNVs were identified in the primary and PDX 
T-ALL samples: 3 frameshift, 8 missense, and 14 UTR variants. 
Six UTR variants had VAF =  1 in primary and PDX T-ALL sam-
ples. Three variants had absolute VAFs greater than 0.25; 1 of these 
SNVs (NOTCH1 frameshift variant) reduced in VAF in PDX sam-
ples, while 2 (CEBPA missense variants) showed gains in PDX 
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Fig. 1. Summary of primary and xenograft RNA variants in acute myeloid leukemia (AML). (A) Allelic specific single nucleotide variants. 
Variant allele frequency (VAF) at time of diagnosis, x-axis is plotted versus the VAF in the xenograft model, y-axis. (B) Structural RNA 
variants. VAF at time of diagnosis, x-axis is plotted versus the VAF in the xenograft model, y-axis. PDX, patient-derived xenograft.

Fig. 2. Summary of primary and xenograft RNA variants in T-cell acute lymphoblastic leukemia (T-ALL). (A) Allelic specific single nucleotide 
variants. Variant allele frequency (VAF) at time of diagnosis, x-axis is plotted versus the variant allele frequency in the xenograft model, 
y-axis. (B) Structural RNA variants. VAF at time of diagnosis, x-axis is plotted versus the VAF in the xenograft model, y-axis. (C) STIL-TAL1 
gene fusion identified in 2 of the T-ALL samples. PDX, patient-derived xenograft.
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samples. NTPL-454 had a strong correlation between SNV VAFs 
in the primary and PDX models (Fig. 2A; green line), whereas 
NTPL-59 and NTPL-300 were not as consistent with VAFs for 
SNVs. 

In total 14 StVs were identified in the primary and PDX models 
for T-ALL samples; 4 unique fusions (STIL-TAL1, SPTAN1- 
ABL1), 7 retained introns (EIF4A, IRF8, KMT2A, NF1, SETD2), 
and 3 molecules with exon duplications (BCL11B and ZCCH7). 
NTPL-300 was the most concordant for VAF of StVs in primary 
and PDX T-ALL samples (Fig. 2B). Of interest, 2 of the T-ALL 
samples had a STIL-TAL gene fusion, which was recently pub-
lished as a potential driver / founder event [22]. 

The correlation between VAF from primary to PDX samples 
was analyzed for RNA StVs and SNVs in 17 B-cell ALL (B-ALL) 
samples. In total 114 RNA SNVs were identified in the primary 
and PDX B-ALL samples, and of those variants 4 were frameshift, 
25 missense, 5 splice region, 2 stop gained and the rest were UTR 
variants (Supplementary Table 1). Twenty-two UTR variants 
(RUNX1, IKZF3, CHIC2, CCND2, BCL2) were detected at iden-
tical VAF of 1 in primary and PDX B-ALL samples. Five variants 
(4.4%) had VAFs greater than 0.25; CHID1, ABL2 UTR variants 
showed decreased VAF, and BCR , CCND2, NOTCH1 SNVs 
showed increased VAF in PDX samples. 

The correlation between SNV VAFs from primary to PDX 

B-ALL samples was higher than the correlation between StV VAFs 
(Pearson correlation coefficient, 0.93; p =  2.2e-16 and 0.5; p =  
9.5e-8, respectively) (Fig. 3A, B). Eight of 17 samples possessed a 
gene fusion (BCR-ABL1, ETV6-RUNX1, P2RY8-CRLF2, RUNX1-
MKL1, TCF3-HLF, TCF3-PBX1). The VAFs for StVs, especially 
the alternate exon usage variants, were more variable in these sam-
ples, similar to AML samples. Interestingly, 15 out of 18 of the 
B-ALL samples had a retained intron in ZCCHC7 involving intron 
2, which was persistent in PDX samples (Fig. 3B). Two AML and 
1 T-ALL sample also showed a similar retained intron variant 
(Supplementary Table 2). ZCCHC7 intron 2 has been mapped to 
hotspot for breakpoints in B-ALL [23]. ZCCHC7 topped the wa-
terfall graph used to analyze and visualize the most commonly al-
tered genes in B-ALL samples (Fig. 4). 

Discussion 

Sequencing of primary acute leukemia patient samples and match-
ing PDX samples showed concordance between the detected vari-
ants and their allelic frequencies for the majority of variants tested. 
The percentage of all variants with absolute delta VAFs < 0.2 was 
86.7%. This percentage was higher in SNVs (93.6%) compared to 
StVs (79.6%) across all primary and PDX samples analyzed. Among 
the different categories of StVs, the allelic frequencies of fusion 

A Allelic specific single nucleotide variants in B-ALL Structural RNA variants detected in B-ALL samplesB

Fig. 3. Summary of primary and xenograft RNA variants in B-cell acute lymphoblastic leukemia (B-ALL). (A) Allelic specific single nucleotide 
variants. Variant allele frequency (VAF) at time of diagnosis, x-axis is plotted versus the VAF in the xenograft model, y-axis. (B) Structural 
RNA variants. VAF at time of diagnosis, x-axis is plotted versus the VAF in the xenograft model, y-axis. PDX, patient-derived xenograft.
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genes, which are considered to be driver mutations, matched most 
consistently between the primary and PDX samples (Fig. 5). Our 
data validate this novel sequencing approach for detection and track-
ing of diverse variants in primary leukemic samples and correspond-
ing PDX lines. 

We identified several SNVs, but no StVs, with sustained VAF =  
1 in primary and PDX samples across all leukemia subtypes. These 
SNVs in genes ABL1, BCL2, CCND2, CHIC2, IKZF3, RUNX1, 
and MECOM, likely represent the germline mutations. Several 
germline variants, including UTR variants have been shown to be 
associated with disposition to hematological malignancies [24]. 

Future characterization of these variants will determine the rele-
vance of these germline UTR variants. 

Retained intron variants were detected in all samples except 
NTPL-59. Retention of introns serves as another mode of regula-
tion of gene expression [25]. Alternative splicing of multi-exon 
genes in patients with AML compared to normal CD34+ cells has 
been observed [26]. Such alternative exon usage variants were as-
sociated with oncogene expression and drug resistance [27]. Fur-
ther work is required to understand the biological and clinical sig-
nificance of alternative exon usage variants. 

As we have shown previously, error-correction via the introduc-

Fig. 4. Waterfall graph for single nucleotide variants (SNVs) and structural variants (StVs) detected in B-cell acute lymphoblastic leukemia  
samples. Genes with either a coding SNV or StV were plotted (y-axis) per sample (x-axis). Mutations are colored based on type.
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Fig. 5. Comparison of variant allele frequencies of structural variants between primary bone marrow samples (x-axis) and matched 
xenograft sample (y-axis). (A) The variant allele frequencies for all gene fusions were plotted between the primary and xenograft model (R2 
= 0.7634). (B) The variant allele frequencies for all retained introns were plotted between the primary and xenograft model (R2 = 0.2906). 
(C) The variant allele frequencies for all exon deletion were plotted between the primary and xenograft model (R2 = 0.0078). (D) The variant 
allele frequencies for all exon duplications were plotted between the primary and xenograft model (R2 = 0.0118).

tion of a nucleic acid-specific UMI allows the removal of NGS er-
rors, retaining only true mutations and significantly improving the 
sensitivity of NGS [28-30]. In this study, we paired the error-correc-
tion strategy with anchored-multiplexed PCR (AMP) chemistry for 
the quantitative detection of complex structural RNA variants. Re-
cently Benayed et al. [31] published an RNA sequencing approach 
similar to the one outlined in this manuscript (MSK targeted RNA 
panel using ArcherDx), and demonstrated that their MSK-IMPACT 
DNA panel missed cancer-related and targetable mutations in great-
er than 15% of lung cancer patients. They leveraged ArcherDx Fu-
sionPlex technology (identical to our approach) to identify these 
cases. Additionally, several recent studies have demonstrated the use 
of AMP technology (ArcherDx) for identifying rare and complex 
structural variants in pediatric cancers [32,33]. 

Taken together, advanced sequencing techniques are required to 
accurately detect and annotate complex StVs that are commonly 
associated with pediatric leukemias. Such complex variants, in-
cluding StVs, are not detectable using DNA and short read se-
quencing technology such as Illumina sequencing platform. Addi-

tionally, the RNA molecules that are generated from these com-
plex genomic rearrangements can be difficult to capture. Using an 
RNA sequencing approach with AMP technology and short read 
sequencing platform described in this study, pediatric PDX mod-
els could be appropriately characterized and validated for concor-
dance of somatic mutations with respect to primary samples. Such 
analysis is not feasible using standard DNA sequencing tech-
niques. This is one of the first reports to describe pediatric PDX 
samples using an RNA sequencing approach. 
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