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Mianorm-based Logics with right and left

. *
n-potency axioms
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[Abstract] This paper deals with mianorm-based logics with right and left
n-potency axioms and their fixpointed involutive extensions. For this, first,
right and left n-potent logic systems based on mianorms, their corresponding
algebraic structures, and their algebraic completeness results are discussed.
Next, completeness with respect to algebras whose lattice reduct is [0, 1],
known as standard completeness, is established for these systems via Yang's
construction in the style of Jenei—Montagna. Finally, further standard
completeness results are introduced for their fixpointed involutive extensions.
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1. Introduction

This paper is a contribution of a standard completeness for
basic substructural fuzzy logics with n-potency axioms. For this,
let us first recall some historical facts associated with such logics.
After Esteva and Godo (2001) introduced Monoidal t-norm logic
MTL as the most basic t-normD logic, fuzzy logic systems based
on more general structures have been introduced. For instance,
uninorms-based logics were introduced by Metcalfe and Montagna
(2007).2) Micanorm-based and mianorm-based logics have been
introduced by Yang (2015; 2016).3)

In particular, standard completeness for basic fuzzy logics and
their corresponding n-potent logics have been established: Jenei
and Montagna (2002) provided standard completeness for MTL
and then Ciabattoni, Esteva, and Godo (2002) introduced such
completeness for CnMTL (MTL with n-contraction axiom (Cn) ¢
" 9" for 2 < n)¥; similarly, standard completeness for
Uninorm logic UL and PnUL (UL with n-potency axiom (Pn)
were established by Metcalfe and Montagna (2007) and Wang

(2012), respectively;3) standard completeness for Micanorm logic

) T-norms are commutative, associative, increasing, binary functions with
identity 1 on the real unit interval [0, 1].

2) Uninorms are a generalization of t-norms where the identity can lie anywhere
in [0, 1].

3) Micanorms are uninorms dropping associativity and mianorms are micanorms
eliminating commutativity.

4) This system is equivalent to PnMTL (MTL with n-potency axiom (Pn) ¢"'
— @", for 2 < n) because the right-to-left direction of (Pn) is provable in
CnMTL.
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MICAL (= SLle) and PnMICAL (MICAL with n-potency axiom)
were established by Cintula et al. (2013) and Yang (2015),
respectively; and standard completeness for Mianorm logic MIAL
(= SLI) and PnMIAL (MIAL with #n-potency axiom) were
established by Cintula et al. (2013) and Yang (2016), respectivel
y.0)

Recently, Yang (2019) realized that the n-potency axiom can be
divided into the n-contraction axiom (Cn) above and n-mingle
axiom (Pn) ¢" — ¢"', for 2 < n, and these two axioms can be
further divided into left and right ones in the context of
non-commutative logic.” (Let ¢" = ((-“(¢ & ¢) & -+ ¢) & I,
n factors, and "d = ¢ & (o & & (b & d) --+)), n factors.
Then we can distinguished the right and left axioms.) According
to this distinction, the system PnMIAL introduced in Yang (2016)
has to be divided right and left ones.8) Then, a natural question

arises as follows:

5) The latter system was first denoted by CnUL. But in order to eliminate any
unnecessary confusion, here we denote it by PnUL and Similarly for
CnMICAL and CnMIAL.

6) The systems MICAL and MIAL were first introduced as SL'. and SL,
respectively, in Cintual et al. (2013) and Horéik (2011). (Note that, as a
referee commented, the latter names do not show that those logics are core
fuzzy logics, whereas the former names show it.) To emphasize that the
systems are based on micanorms and mianorms, respectively, here we
describe them as the micanorm-based logic MICAL and the mianorm-based
logic MIAL. For some more detailed reasons, see Yang (2016).

7 As mentioned in Yang (2019), Hori et al. (1994) first introduced
n-contraction and n-mingle axioms and Baldi (2014) introduced Wang's
CnUL, for n > 2, as UL with both the n-contraction and n-mingle axioms.

8) Note that PnMIAL introduced in Yang (2016) corresponds to the MIAL with
right n-potency axiom below.
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Can we introduce mianorm-based logics with left and right

n-potency axioms?

It seems that the answer is yes because the n-potency axiom
can be divided into left and right n-contractive and n-mingle
axioms and these systems have been investigated in Yang (2019).
However, unfortunately this idea was not verified in it. Here we
verify this fact. More precisely, we introduced the MIAL with left
and right n-potency axioms and provide standard completeness for
them.

The paper is organized as follows. In Section 2, we discuss the
mianorm-based logic MIAL with right and left n-potency axioms
along with their corresponding algebras. In Section 3, we establish
standard ~ completeness  for  those  logics  using  the
Jenei-Montagna-style construction introduced in Ciabattoni, Esteva,
& Godo (2002) and Jenei & Montagna (2002). Especially,
standard completeness is established for these systems via Yang's
construction introduced in Yang (2015; 2016). In Section 4,
further standard completeness results are introduced for their
fixpointed involutive extensions.?)

For convenience, we shall adopt notations and terminology
similar to those in Cintula (2006), Hajek (1998), Metcalfe &
Montagna (2007), Yang (2015; 2016, 2017a; 2017b), and assume

reader familiarity with them (together with the results found

9 Note that Yang already considered such extensions in Yang (2017b).
However, in standard completeness, he did not provide an exact proof for
left and right n-potencies. Thus, here we reconsider those systems.
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therein).

2. Syntax

We base some axiomatic extensions of the mianorm logic
MIAL on a countable propositional language with formulas Fm
built inductively as usual from a set of propositional variables
VAR, binary connectives —, =, &, A, V, and constants T, F, f,

t, with a defined connective:10)
dfl. ¢ & vy = (p — ) A (v — ).

We moreover define ¢¢ := ¢ A t. For the rest of this paper,
we use the customary notations and terminology, and the axiom
systems to provide a consequence relation.

We start with the following axiomatization of MIAL, the most

basic fuzzy logic introduced here.

Definition 2.1 (Yang (2016)) MIAL consists of the following
axiom schemes and rules:

Al. (b N v) — ¢, (P A w) — w (A-elimination, A-E)

A2. (P—=Y)N\(dD—X)) — (d—=>(wAX)) (A-introduction, A-I)

A3. O = (0 V v), y — (¢ V w) (V-introduction, V -I)

Ad. (D= A (w—X)) = (¢ Vw)—X) (V-elimination, V-E)

100 The notation = (as one of implications) is in general expressed by
squigarrow — or leftarrow <— and the notation & (as strong conjunction) is
often expressed by fusion O.
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AS5. F — ¢ (ex falso quadlibet, EF)

A6. (t = ¢) < ¢ (push and pop, PP)

A7. o —- (v — (v & §)) (&-adjunction., &-Adj-)
AS. 0 — (= (0 & W) (&-Adi)

A9. (O¢ & w)) — (O N w) (&N)

A10.
All.
Al2.
Al3.
Al4.
AlS.
Alé.
Al7.

v & (® & (& — (v — X)) — X (residuation, Res'")
(P & (= (¥ — X)) & w) = X (Res's)

(=@ & @ —>w) & W—Xx)—(@—x) (T
(P = (P=w) & 9) & (¥ — X)) — (¢ = x) (TS)
(O = w) V (6 & ) = (6 & (¢ & (y—0)))) (PLas,)
(® = w) V (6 & &) = (6 & (v—0)) & €)) (PLa's,)
(O — w) V (6 — (¢ = ((e&5) & (w — )))) (PLBs,)
(& — w) V (6 — (¢ = ((e&6) & (w—0)))) (PLB's.)

® — v, & - y (modus ponens, mp)

d

LGS SIS =2

G (adju)

(6 &e)— (6 & (&) (1)
(6 & &) = (6 & 9) & ¢) (a)
6— (e~ (e &) &) B
6—> (= (6 &¢e) &) (B)

Right and left n-potent fuzzy logics are defined by extending

MIAL with suitable axiom schemes. Especially, we introduce the

following extensions.

Definition 2.2 A logic is an axiomatic extension (extension for

short) of an arbitrary logic L if and only if (iff) it results from L

by adding axiom schemes. Especially, we introduce two particular
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extensions of MIAL.

@ Right n-potent mianorm logic

P,MIAL is MIAL plus (P) ¢" < ¢"', 2
@ Left n-potent mianorm logic

P.MIAL is MIAL plus (P}) "p < "', 2 < n.

IA
=)

For easy reference, we let Ls be the set of the fuzzy logics
defined in Definition 2.2.

Definition 2.3 Ls = {P,MIAL, P,MIAL}

A theory over L & Ls is a set T of formulas. A proof in a
theory over L is a sequence of formulas each of whose members
is either an axiom of L or a member of T or follows from some
preceding members of the sequence using a rule of L. T ~ ¢,
more exactly T +r ¢, means that ¢ is provable in T w.r.t. L,
i.e., there is an L-proof of ¢ in T. A theory T is inconsistent if
T + F; otherwise it is consistent.

The deduction theorem for L is as follows:

Proposition 2.4 (Cintula et al. (2013; 2015)) Let T be a theory,
and ¢, ¢ formulas. T U {¢} L w iff T Fr y(¢) — w for
some y € II(bDT).1D

13

For convenience, “~,” “A,)” “V.)” “=” and “=" are used

1) For y and H(bDT*), see Cintula et al. (2013; 2015) and Yang (2015).
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ambiguously as propositional connectives and as algebraic
operators, but context should clarify their meaning.

Suitable algebraic structures for L & Ls are obtained as a
subvariety of the variety of residuated lattice-ordered groupoids

(briefly rlu-groupoids) in the sense of Galatos et al. (2007).

Definition 2.5 (Yang (2016)) (1) A pointed bounded
rlu-groupoid is a structure A = (A, T, L, t, f, A, V, * —
=) such that:

(I) A, T, L, A, V) is a bounded lattice with top element

T and bottom element L.
(O) (A, * t) is a groupoid with unit.
(My<x—ziffx*y < ziff x < y= gz for all x, vy,
z € A (residuation).

Since the class of pointed, bounded rlu-groupoids characterizes
the system SL, we henceforth call these groupoids SL-algebras.
(1) Let x, be x A t. An MIAL-algebra is an SL-algebra

satisfying: for all x, y, z, w € A,

@t = (x—yxV (z*w— (z* W y—xW) (PLas:)

@t = (x—yxV (z*w— (zy—x) * w) (PLa’s,")

@t = (x—yxV (W= (W2 * (y—x)0) (PLE:")

@t = (x—y)V z— W= (W2*y—x0) PLB:Y.

A IA

IA

L-algebras the class of which characterizes L are defined as

follows.

Definition 2.6 (L-algebras) The algebraic  (in)equations
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corresponding to the structural axioms introduced in Definition 2.2

are defined as follows: for all x & A,

A
=
~
<,
=
>
~

. Xn — Xn-l,
@ "x="x2<n (PL)
A P,MIAL-algebra is an MIAL-algebra satisfying (P,*) and a

PInM]AL-algebm is an MIAL-algebra satisfying (PN, We call
these algebras L-algebras.

An L-algebra is said to be linearly ordered if the ordering of
its algebra is linear, ie., x < y or y < x (equivalently, x A y

=x or x A\ y =y) for each pair x, y.

Definition 2.7 (Evaluation) Let «{ be an algebra. An
d-evaluation 1s a function v : Fm — o satisfying: v(¢ — wy) =
v(0) — v(w), V(¢ = v) = v(d) = v(v), V(& N W) = v(d) A
vw), (O VvV w) = v(P) V v(w), V(O & ¥) = V(D) * v(w), v(F)
= 1, v(f) = £, (and hence v(T) = T and v(t) = t).

Definition 2.8 Let § be an L-algebra, T a theory, ¢ a formula,
and K a class of L-algebras.

(i) (Tautology) & is a t-tautology in d, briefly an «-tautology
(or d-valid), if v(p) > t for each f-evaluation v.

(i) (Model) An «-evaluation v is an §-model of T if v(p) > t
for each ¢ & T. We denote the class of f-models of T, by
Mod(T, ).
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(1i1) (Semantic consequence) & is a semantic consequence of T
wrt. K, denoting by T Fk ¢, if Mod(T, £) = Mod(T U {},
d) for each 4 € K.

Definition 2.9 (L-algebra) Let #{, T, and ¢ be as in Definition
3.4. 4 is an L-algebra iff, whenever ¢ is L-provable in T (i.e. T
Fv ¢, L an L logic), it is a semantic consequence of T w.r.t.
the set {4} (ie. Tk ). By MOD”(L), we denote the class
of (linearly ordered) L-algebras. Finally, we write T % ¢ in
place of T |:MOD(1)(L) d.

Theorem 2.10 (Strong completeness) Let T be a theory, and ¢
a formula. T . ¢ iff T =y ¢ iff T Y 0.

Proof: We obtain this theorem as a corollary of Theorem 3.1.8
in Cintula & Noguera (2011). []

3. Standard completeness

Here we establish standard completeness for L & Ls by use of
the Jenei-Montagna-style construction introduced in Yang (2015;
2016). First note the following facts.

Fact 3.1 (Yang (2016)) For every finite or countable linearly
ordered MIAL-algebra A = (A, <A, T, L, t, f, A, V, * —
=), there is a countable ordered set X, a binary operation O,

and a map /4 from A into X such that the following conditions
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hold:

(I) X is densely ordered, and has a maximum Max, a minimum
Min, and special elements e, 0.

(O) (X, O, X, e) is a linearly ordered, monotonic, groupoid
with unit.

(IT) O is conjunctive and left-continuous w.r.t. the order topology
on (X, X).

(IV) h i1s an embedding of the structure (A, <a, T, L, t, f A,
V, ) into (X, <, Max, Min, ¢, 0, min, max, O), and for all
m, n € A, i(m — n) and A(m = n) are the residuated pair of
h(m) and A(n) in (X, <, Max, Min, ¢, 0, max, min, O).

Fact 3.2 (Strong standard completeness, Yang (2016)) For
MIAL, the following are equivalent:

(1) T L .

(2) For every standard MIAL-algebra and evaluation v, if v(y)
> ¢ for all y € T, then W(p) > e.

As in Fact 3.1, we then show that finite or countable, linearly
ordered L-algebras are embeddable into a densely ordered

L-algebra.

Proposition 3.3 For every finite or countable linearly ordered
L-algebra A = (A, <a, T, L, t f A, V, * — =), there is
a countable ordered set X, a binary operation O, and a map #h
from A into X such that the conditions (I) to (IV) in Fact 3.1

and the following condition hold:



12 Eunsuk Yang

(V) O satisfies right (left resp) n-potent property corresponding to
*

Proof: For convenience, we assume A as a subset of Q N [0,
1] with a finite or countable number of elements, where 0 and 1
are least and greatest elements, respectively, each of which

corresponds to T and L, respectively. Let

X={m xme& A\ {0(= L) and x € Q N (0, m]
U {(0, 0)}.

For (m, x), (n, y) € X, we define:
(m, x) < (n, y) iff either m <4 n, or m =5 n and x < y.

For convenience, we henceforth drop the index A in <, and
=y, 1f we need not distinguish them. Context should clarify the

intention.
Now we need to define O for P,MIAL and Pl,,MIAL. For

P,MIAL and PMIAL, 3 < n, the definition of O is as follows.
For (m, x), (n, y) € X,

(mx) O (ny) = max{(mx), (ny)} if m*n = mVn, m #, n, and
(m x) < ¢ or(ny < e¢;

min{(m,x), (n,y)} if m * n = m A z, and
(m, x) < ¢ or(ny < ¢;

(m * n, m * n) otherwise.
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For POMIAL (= PleIAL), the definition of O is as follows.
For (m, X), (n, y) € X,

(mx) O (ny) = max{(mx), (ny)} if m * n =m V n, and
(m, x) > e or (n,y) > ¢;
min{(m,x), (n,y)} if m * n = m A z, and
(m, x) < ¢ or(ny < ¢;

(m * n, m * n) otherwise.

For the proof of the conditions (I) to (IV), see Proposition 2 in
Yang (2016). We prove the condition (V).
For Pl,,MIAL, we have to further prove left n-potency, i.e., "(m,

x) = "(m, x) for 2 < n and for (m, x) € X.

Case 1. ¢ < (m, x). If ’m = m, then (m, x) O (m, X) = (m,
x) and thus "'(m, x) = "(m, x). Otherwise, we have t < m < “m
and thus (m, x) O (m, x) = (2m, 2m). Hence, similarly we
further have that (m, x) O (Zm, 2m) = (3m, 3m) and thus "'(m,
x) = ("'m, "'m) and "(m, x) = ("m, "m). Therefore, we have "(m,
x) = "(m, x) since "'m = "'m.

Case 2. (m, Xx) < e. If ‘m < m, we obtain (m, x) O (m, X)
= (2m, Zm), (m, x) O (Zm, 2m) = (3m, 3m) and thus, as above,
"(m, x) = "'(m, x). Otherwise, since ‘m = m < t, we have (m,

x) O (m, X) = (m, x) and thus "'(m, x) = "(m, x).

For P',MIAL, we have to further prove right n-potency, i.e.,
(m, x)" = (m, x)"' for 2 < n and for (m, x) € X. The proof
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is analogous to that of left n-potency. This completes the proof.

[]

Proposition 3.4 Every countable linearly ordered L-algebra can

be embedded into a standard algebra.

Proof: In an analogy to the proof of Proposition 3 in Yang
(2016), we prove this. Let X, A, etc. be as in Proposition 3.3.
Since (X, <) is a countable, dense, linearly-ordered set with
maximum and minimum, it is order isomorphic to (Q N [0, 1],
<). Let g be such an isomorphism. If (I) to (V) in Proposition
3.3 hold, letting, for a, B € [0, 1], « O~ B = g(g'(a) O g
(B)), and, for all m & A, h’ (m) = g(h(m)), we obtain that Q
Nnipo, 1], <,1,0,e 9, O, h" satisfy the conditions (I) to
(V) of Proposition 3.3 whenever X, <, Max, Min, e, ¢, O, and
h do. Thus, without loss of generality, we can assume that X =
QNI I]and < = <,and so O = O .

Now, we define for a, B € [0, 1],

@ O B = supxexx=aSUpyexy=p X O .

The monotonicity and identity of O ” are easy consequences
of the definition. Furthermore, it follows from the definition that
O ” is conjunctive, i.e, 0 O” 1 =1 O” 0 = 0. For the
left-continuity of O ”, see Proposition 3 in Yang (2016).

We prove left and right n-potency properties. Suppose that <aq;

: 1 € N> is an increasing sequence of reals in [0, 1] such that
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sup{a; : i € N} = a. First note that "'a = sup{"'q : q € Q N
[0, 1], ¢ < a} and "a = sup{'q: q € Q N [0, 1], q < a}.
For the left n-potency of O ", we have to show "'a = "a, 2 <
n. Since "'q = "q, we have that sup{"'q :q € Q N [0, 1], q
< a =supf’qg:q<E QN[0 1], g < a}; therefore, "'a = "
a. The proof of the right n-potency of O ” is analogous.

It is an easy consequence of the definition that O ”extends O.
By (I) to (V), & is an embedding of (A, <a, T, L, t f A,
V, *) into ([0, 1], <, 1, 0, e, @, min, max, O 7). Finally,
for the fact that O ” has a residuated pair of implications,
calling it (— ", = "), see Proposition 3 in Yang (2016). []

Theorem 3.4 (Strong standard completeness) For L & Ls, the
following are equivalent:

(DT F. .

(2) For every standard L-algebra and evaluation v, if w(y) >
e for all y & T, then W(9) > e.

Proof: The (1)-to-(2) direction is obvious. We prove the
(2)-to-(1) direction. Let ¢ be a formula such that T }*1 ¢, A a
linearly ordered L-algebra, and v an evaluation in A such that v
() > t for all y &€ T and v($) < t. Let 42" be the embedding
of A into the standard L-algebra as in proof of Proposition 3.3.
Then, 2~ O v is an evaluation into the standard L-algebra such
that #~ O v(y) > e and yet i O v(}) < e. []
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4. Fixpointed involutive extensions

Here we provide standard completeness for the fixpointed
involutive extensions of L & Ls.

First, we introduce two negations as defined connectives:

d2. ' = ¢ — f, and
df3. ~p = ¢ = f.

We next introduce some involutive extensions and their

corresponding algebras.

Definition 4.1 (i) (Yang (2017a)) Involutive MIAL system
IMIAL is the MIAL with the following axiom schemes:
Al8. ~ 'd — ¢ (double negation elimination, DNE(1))
A19. '~ — ¢ (double negation elimination, DNE(2))
(i) (Yang (2017b)) For L & Ls, fixpointed and involutive
extensions of L are introduced as follows:!2)
@ Right n-potent, fixpointed, involutive mianorm logic
P . FIMIAL is IMIAL plus (P",) and (fixpoint, FP) t < f.
@ Left n-potent, fixpointed, involutive mianorm logic
P.FIMIAL is IMIAL plus (P) and (FP).

Definition 4.2 (i) Let 'x = x — f and ~x = x = f for all

12) P,FIMIAL and P FIMIAL were denoted by IMIALC".f and IMIALc,f,
respectively, in Yang (2017b).
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X € A. An IMIAL-algebra is an MIAL-algebra satisfying: for all
x € A, (DNE(1)*) ~ 7x < x and (DNE(2)") "~x < x.

(i) A P.FIMIAL-algebra is an IMIAL-algebra satisfying (PrnA)
and (fY t = £ a P'FIMIAL-algebra is an IMIAL-algebra
satisfying (PlnA) and (tA ). For convenience, we call these algebras
FIL-algebras.

Now we consider standard completeness for FIL & {
P FIMIAL, P, FIMIAL}.

Fact 4.3 (Yang (2017a)) For every finite or countable linearly
ordered IMIAL-algebra A = (A, <, T, L, t f, A, V, * —
=), there 1s a countable ordered set X, a binary operation O,
and a map h from A into X such that the conditions (I) to (IV)

5

in Fact 3.1 and the following condition hold:
(VI) For all x € X, x is involutive, i.e., it satisfies (DNE(1)")
and (DNE(2)").

Proposition 4.4 For every finite or countable linearly ordered
FIL-algebra A = (A, <a, T, L, t, £, A, V, * —, =), there is
a countable ordered set X, a binary operation O, and a map h
from A into X such that the conditions (I) to (V) in Proposition
3.3, (VI) in Fact 4.3, and (f*).

Proof: We first note that, for IMIAL, m' denotes the successor
of m if it exists, otherwise m' = m, for each m € A. Note that,

since the pair of negations in A, defined as 'm = m — ¢ and
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~m = m = g, is involutive, we have that: m = (" 'n)’ iff n =
(T'm)" and m = (~n)" iff n = (~m)"; moreover, if m < m’, then
((m"))" = “m and (~(m")) = ~m. Here, we use Y below in
place of the X above. Let (Y, <) be the linearly ordered set,
defined by

Y ={m mme& A} U
{(m, x): ImM'EA such that m =m” > m, and x € Q N (0, m)},

and < being the corresponding lexicographic ordering as above.
Then, it suffices to check the condition (V). In order to
distinguish the two O's introduced in Proposition 3.3, we denote
the first and second circles as Oy; and Oya, respectively.

Now, we define new operations ®y; on Y, based on Oy, and
®y2 on Y, based on Oy, as follows (but, for convenience,

henceforth dropping each index if we need not distinguish them
):13)

(m,x)O(ny) = min{ ¢ ,(m,x)O(ny)} if m=("'n)" and p/qtp’/q’ <1,
where x = mp/q and y=np’/q’,
orm < (" 'n)’; or
if m=(~n)" and p/qtp’/q’ <1,
where x = mp/q and y=np’/q’,
or m < (~n)’; or

(m,x) O (ny) otherwise.

13) This definition was introduced in Yang (2017a)
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Note that ®y; is for PLFIMIAL and PlnFIMIAL, 3 < pn, and ©®
v2 is for PSFIMIAL (= P,FIMIAL).

The operation ® satisfies conditions (I) to (IV), (VI), and (f*)
(see Proposition 2 in Yang (2017a) and Proposition 3.2 in Yang
(2017b)). Thus, we need to consider the condition (V).

We prove the left n-potency of ©®, ie., "(m, x) = "'(m, x), 2
< n

Case 1. m = (~m) and 2p/q < 1, where x = mp/q, or m <
(~m)"

Subease 1.1. m = “m. Since t < m is not the case, we have m
=’m < t="fc< (~m)" and thus (m, X) ®y, (m, X) = min{d,
(m, x) Oy2 (m, x)} = (m, Xx) Oyz (m, Xx) = (m, x); therefore,
"(m, x) = "'(m, x) since ‘'m = ‘m and thus "m = "'m for 2 < n.

Subcase 1.2. m # ‘m. We have to show "(m, x) = "'(m, X)
for 2 < n. Since the condition implies m < m < t, we have (m,
X) ®Oy; (m, X) = min{gd, (m, X) Oy; (m, X)} = (m, X) Oy (m,
x). Therefore, as above, we have that "(m, x) = n'l(m, X).

Case 2. m = ("'m)" and 2p/q < 1, where x = mp/q, or m <
(T'm)". The proof is analogous to that of Case I.

Case 3. Otherwise. The proof is reducible to that of the left
n-potency for P,MIAL in Proposition 3.3.

The proof for the right n-potency of ©, ie., (m, x)" = (m,

x)*', 2 < n, is analogous to the left one. []

Proposition 4.5 Every countable linearly ordered FIL-algebra can

be embedded into a standard algebra.
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Proof: The proof of this claim is analogous to that of
Proposition 3.4. [ ]

Theorem 4.6 (Strong standard completeness) For FIL & ¢
P FIMIAL, P, FIMIAL}, the following are equivalent:

(DT Fe 9.

(2) For every standard FIL-algebra and evaluation v, if v(y) >
e for all y & T, then v(¢) > e.

Proof: The (1)-to-(2) direction follows from the definition. For
the (2)-to-(1) direction, let ¢ be a formula such that T Fer O,
A a linearly ordered FIL-algebra, and v an evaluation in A such
that v(y) > t for all y & T and v(d) < t. Let A" be the
embedding of A into the standard FIL-algebra as in proof of
Proposition 4.4. Then, /° ® v is an evaluation into the standard
FIL-algebra such that 2" © v(y) > e and yet /" © v(}) < e.
L]

5. Concluding remark

We investigated (not merely algebraic completeness for P,MIAL
and P,MIAL but also) standard completeness for P,MIAL and
P.MIA via Yang's construction in the style of Jenei—Montagna.
We further considered their fixpointed involutive extensions. Note
that this construction does not work for their involutive extensions
(see Yang (2017b)). To introduce such semantics for their

involutive extensions is a problem left in this paper.
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