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Abstract This paper deals with mianorm-based logics with right and left
n-potency axioms and their fixpointed involutive extensions. For this, first,
right and left n-potent logic systems based on mianorms, their corresponding
algebraic structures, and their algebraic completeness results are discussed.
Next, completeness with respect to algebras whose lattice reduct is [0, 1],
known as standard completeness, is established for these systems via Yang's
construction in the style of Jenei Montagna. Finally, further standard
completeness results are introduced for their fixpointed involutive extensions.
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1. Introduction

This paper is a contribution of a standard completeness for

basic substructural fuzzy logics with n-potency axioms. For this,

let us first recall some historical facts associated with such logics.

After Esteva and Godo (2001) introduced Monoidal t-norm logic

MTL as the most basic t-norm1) logic, fuzzy logic systems based

on more general structures have been introduced. For instance,

uninorms-based logics were introduced by Metcalfe and Montagna

(2007).2) Micanorm-based and mianorm-based logics have been

introduced by Yang (2015; 2016).3)

In particular, standard completeness for basic fuzzy logics and

their corresponding n-potent logics have been established: Jenei

and Montagna (2002) provided standard completeness for MTL

and then Ciabattoni, Esteva, and Godo (2002) introduced such

completeness for CnMTL (MTL with n-contraction axiom (Cn) φ
n-1 φn, for 2 < n)4); similarly, standard completeness for

Uninorm logic UL and PnUL (UL with n-potency axiom (Pn)

were established by Metcalfe and Montagna (2007) and Wang

(2012), respectively;5) standard completeness for Micanorm logic

1) T-norms are commutative, associative, increasing, binary functions with

identity 1 on the real unit interval [0, 1].
2) Uninorms are a generalization of t-norms where the identity can lie anywhere

in [0, 1].
3) Micanorms are uninorms dropping associativity and mianorms are micanorms

eliminating commutativity.
4) This system is equivalent to PnMTL (MTL with n-potency axiom (Pn) φn-1

φ
n, for 2 < n) because the right-to-left direction of (Pn) is provable in

CnMTL.
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MICAL (= SLl
e) and PnMICAL (MICAL with n-potency axiom)

were established by Cintula et al. (2013) and Yang (2015),

respectively; and standard completeness for Mianorm logic MIAL

(= SLl) and PnMIAL (MIAL with n-potency axiom) were

established by Cintula et al. (2013) and Yang (2016), respectivel

y.6)

Recently, Yang (2019) realized that the n-potency axiom can be

divided into the n-contraction axiom (Cn) above and n-mingle

axiom (Pn) φn φn-1, for 2 < n, and these two axioms can be

further divided into left and right ones in the context of

non-commutative logic.7) (Let φn := (( ( & ) & ) & ,φ φ φ φ

n factors, and n := & ( & & ( & ) )), n factors.φ φ φ φ φ

Then we can distinguished the right and left axioms.) According

to this distinction, the system PnMIAL introduced in Yang (2016)

has to be divided right and left ones.8) Then, a natural question

arises as follows:

5) The latter system was first denoted by CnUL. But in order to eliminate any

unnecessary confusion, here we denote it by PnUL and Similarly for

CnMICAL and CnMIAL.
6) The systems MICAL and MIAL were first introduced as SLl

e and SLl,

respectively, in Cintual et al. (2013) and Horĉík (2011). (Note that, as a

referee commented, the latter names do not show that those logics are core

fuzzy logics, whereas the former names show it.) To emphasize that the

systems are based on micanorms and mianorms, respectively, here we

describe them as the micanorm-based logic MICAL and the mianorm-based

logic MIAL. For some more detailed reasons, see Yang (2016).
7) As mentioned in Yang (2019), Hori et al. (1994) first introduced

n-contraction and n-mingle axioms and Baldi (2014) introduced Wang's

CnUL, for n > 2, as UL with both the n-contraction and n-mingle axioms.
8) Note that PnMIAL introduced in Yang (2016) corresponds to the MIAL with

right n-potency axiom below.
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Can we introduce mianorm-based logics with left and right

n-potency axioms?

It seems that the answer is yes because the n-potency axiom

can be divided into left and right n-contractive and n-mingle

axioms and these systems have been investigated in Yang (2019).

However, unfortunately this idea was not verified in it. Here we

verify this fact. More precisely, we introduced the MIAL with left

and right n-potency axioms and provide standard completeness for

them.

The paper is organized as follows. In Section 2, we discuss the

mianorm-based logic MIAL with right and left n-potency axioms

along with their corresponding algebras. In Section 3, we establish

standard completeness for those logics using the

Jenei-Montagna-style construction introduced in Ciabattoni, Esteva,

& Godo (2002) and Jenei & Montagna (2002). Especially,

standard completeness is established for these systems via Yang's

construction introduced in Yang (2015; 2016). In Section 4,

further standard completeness results are introduced for their

fixpointed involutive extensions.9)

For convenience, we shall adopt notations and terminology

similar to those in Cintula (2006), Hájek (1998), Metcalfe &

Montagna (2007), Yang (2015; 2016, 2017a; 2017b), and assume

reader familiarity with them (together with the results found

9) Note that Yang already considered such extensions in Yang (2017b).

However, in standard completeness, he did not provide an exact proof for

left and right n-potencies. Thus, here we reconsider those systems.
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therein).

2. Syntax

We base some axiomatic extensions of the mianorm logic

MIAL on a countable propositional language with formulas Fm

built inductively as usual from a set of propositional variables

VAR, binary connectives , , &, , , and constants T, F, f,

t, with a defined connective:10)

df1. := ( ) ( ).φ ψ φ ψ ψ φ

We moreover define φt := φ t. For the rest of this paper,

we use the customary notations and terminology, and the axiom

systems to provide a consequence relation.

We start with the following axiomatization of MIAL, the most

basic fuzzy logic introduced here.

Definition 2.1 (Yang (2016)) MIAL consists of the following

axiom schemes and rules:

A1. ( ) , ( ) ( -elimination, -E)φ ψ φ φ ψ ψ

A2. (( ) ( )) ( ( )) ( -introduction, -I)φ ψ φ χ φ ψ χ

A3. ( ), ( ) ( -introduction, -I)φ φ ψ ψ φ ψ

A4. (( ) ( )) (( ) ) ( -elimination, -E)φ χ ψ χ φ ψ χ

10) The notation (as one of implications) is in general expressed by

squigarrow or leftarrow and the notation & (as strong conjunction) is

often expressed by fusion .
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A5. F (ex falso quadlibet, EF)φ

A6. (t ) (push and pop, PP)φ φ

A7. ( ( & )) (&-adjunctionφ ψ ψ φ , &-Adj )

A8. ( ( & )) (&-Adjφ ψ φ ψ )

A9. (φt & ψt) ( ) (& )φ ψ

A10. ( & ( & ( ( )))) (residuation, Res')ψ φ φ ψ χ χ

A11. (( & ( ( ))) & ) (Res'φ φ ψ χ ψ χ )

A12. (( ( & ( ))) & ( )) ( ) (T')φ φ φ ψ ψ χ φ χ

A13. (( (( ) & ))) & ( )) ( ) (T'φ φ ψ φ ψ χ φ χ )

A14. ( )φ ψ t (( & ) ( & ( & ( )δ ε δ ε ψ φ t))) (PLα ,δ ε)

A15. ( )φ ψ t (( & ) (( & ( )δ ε δ ψ φ t) & )) (PL 'ε α ,δ ε)

A16. ( )φ ψ t ( ( (( & ) & ( )δ ε ε δ ψ φ t))) (PLβ ,δ ε)

A17. ( )φ ψ t ( ( (( & ) & ( )δ ε ε δ ψ φ t))) (PL 'β ,δ ε)

, (modus ponens, mp)φ ψ φ ψ

φ φt (adju)

( & ) ( & ( & )) ( )φ δ ε δ ε φ α

( & ) (( & ) & ) ( ')φ δ ε δ φ ε α

( (( & ) & )) ( )φ δ ε ε δ φ β

( (( & ) & )) ( ')φ δ ε δ ε φ β

Right and left n-potent fuzzy logics are defined by extending

MIAL with suitable axiom schemes. Especially, we introduce the

following extensions.

Definition 2.2 A logic is an axiomatic extension (extension for

short) of an arbitrary logic L if and only if (iff) it results from L

by adding axiom schemes. Especially, we introduce two particular
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extensions of MIAL.

Right n-potent mianorm logic

Pr
nMIAL is MIAL plus (Prn) φ

n φn-1, 2 n.

Left n-potent mianorm logic

Pl
nMIAL is MIAL plus (Pln)

nφ n-1 , 2 n.φ

For easy reference, we let Ls be the set of the fuzzy logics

defined in Definition 2.2.

Definition 2.3 Ls = {Pr
nMIAL, Pl

nMIAL}

A theory over L Ls is a set T of formulas. A proof in a

theory over L is a sequence of formulas each of whose members

is either an axiom of L or a member of T or follows from some

preceding members of the sequence using a rule of L. T ,φ

more exactly T L , means that isφ φ provable in T w.r.t. L,

i.e., there is an L-proof of in T. A theory T isφ inconsistent if

T F; otherwise it is consistent.

The deduction theorem for L is as follows:

Proposition 2.4 (Cintula et al. (2013; 2015)) Let T be a theory,

and , formulas. T { }φ ψ φ L iff Tψ L ( ) forγ φ ψ

some (bDTγ Π
*).11)

For convenience, “ ,” “ ,” “ ,” “ ,” and “ ” are used

11) For and (bDTγ Π *), see Cintula et al. (2013; 2015) and Yang (2015).
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ambiguously as propositional connectives and as algebraic

operators, but context should clarify their meaning.

Suitable algebraic structures for L Ls are obtained as a

subvariety of the variety of residuated lattice-ordered groupoids

(briefly rlu-groupoids) in the sense of Galatos et al. (2007).

Definition 2.5 (Yang (2016)) (i) A pointed bounded

rlu-groupoid is a structure A = (A, , , t, f, , , *, ,

) such that:

( ) (A, , , , ) is a bounded lattice with top element

and bottom element .

( ) (A, *, t) is a groupoid with unit.

( ) y x z iff x * y z iff x y z, for all x, y,

z A (residuation).

Since the class of pointed, bounded rlu-groupoids characterizes

the system SL, we henceforth call these groupoids SL-algebras.

(ii) Let xt be x t. An MIAL-algebra is an SL-algebra

satisfying: for all x, y, z, w A,

t (x y)t ((z * w) (z * (w*(y x)t))) (PLα ,δ ε
A)

t (x y)t ((z * w) ((z*(y x)t) * w)) (PL 'α ,δ ε
A)

t (x y)t (z (w ((w*z) * (y x)t))) (PLβ ,δ ε
A)

t (x y)t (z (w ((w*z)*(y x)t))) (PL 'β ,δ ε
A).

L-algebras the class of which characterizes L are defined as

follows.

Definition 2.6 (L-algebras) The algebraic (in)equations
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corresponding to the structural axioms introduced in Definition 2.2

are defined as follows: for all x A,

xn = xn-1, 2 n, (Prn
A)

n-1x = nx, 2 n, (Pln
A)

A Pr
nMIAL-algebra is an MIAL-algebra satisfying (Prn

A) and a

Pl
nMIAL-algebra is an MIAL-algebra satisfying (Pln

A). We call

these algebras L-algebras.

An L-algebra is said to be linearly ordered if the ordering of

its algebra is linear, i.e., x y or y x (equivalently, x y

= x or x y = y) for each pair x, y.

Definition 2.7 (Evaluation) Let be an algebra. An

-evaluation is a function v : Fm satisfying: v( ) =φ ψ

v( ) v( ), v( ) = v( ) v( ), v( ) = v( )φ ψ φ ψ φ ψ φ ψ φ

v( ), v( ) = v( ) v( ), v( & ) = v( ) * v( ), v(ψ φ ψ φ ψ φ ψ φ ψ F)

= , v(f) = f, (and hence v(T) = and v(t) = t).

Definition 2.8 Let be an L-algebra, T a theory, a formula,φ

and a class of L-algebras.

(i) (Tautology) is aφ t-tautology in , briefly an -tautology

(or -valid), if v( ) t for eachφ -evaluation v.

(ii) (Model) An -evaluation v is an -model of T if v( ) tφ

for each T. We denote the class ofφ -models of T, by

Mod(T, ).
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(iii) (Semantic consequence) is aφ semantic consequence of T

w.r.t. , denoting by T , if Mod(T,φ ) = Mod(T { },φ

) for each .

Definition 2.9 (L-algebra) Let , T, and be as in Definitionφ

3.4. is an L-algebra iff, whenever isφ L-provable in T (i.e. T

L , L an L logic), it is a semantic consequence of T w.r.t.φ

the set { ⊨ ). Byφ MOD(l)(L), we denote the class

of (linearly ordered) L-algebras. Finally, we write T (l)
L inφ

place of T MOD
(l)
(L) .φ

Theorem 2.10 (Strong completeness) Let T be a theory, and φ

a formula. T L iff Tφ L iff Tφ
l
L .φ

Proof: We obtain this theorem as a corollary of Theorem 3.1.8

in Cintula & Noguera (2011).

3. Standard completeness

Here we establish standard completeness for L Ls by use of

the Jenei-Montagna-style construction introduced in Yang (2015;

2016). First note the following facts.

Fact 3.1 (Yang (2016)) For every finite or countable linearly

ordered MIAL-algebra A = (A, A, , , t, f, , , *, ,

), there is a countable ordered set X, a binary operation ,

and a map h from A into X such that the following conditions
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hold:

( ) X is densely ordered, and has a maximum Max, a minimum

Min, and special elements , .

( ) (X, , , ) is a linearly ordered, monotonic, groupoid󰀃

with unit.

( ) is conjunctive and left-continuous w.r.t. the order topology

on (X, ).󰀃

( ) h is an embedding of the structure (A, A, , , t, f, ,

, *) into (X, , Max, Min, , , min, max, ), and for all󰀃

m, n A, h(m n) and h(m n) are the residuated pair of

h(m) and h(n) in (X, , Max, Min, , , max, min, ).󰀃

Fact 3.2 (Strong standard completeness, Yang (2016)) For

MIAL, the following are equivalent:

(1) T MIAL .φ

(2) For every standard MIAL-algebra and evaluation v, if v( )ψ

for all T, thenψ v( ) .φ

As in Fact 3.1, we then show that finite or countable, linearly

ordered L-algebras are embeddable into a densely ordered

L-algebra.

Proposition 3.3 For every finite or countable linearly ordered

L-algebra A = (A, A, , , t, f, , , *, , ), there is

a countable ordered set X, a binary operation , and a map h

from A into X such that the conditions (I) to (IV) in Fact 3.1

and the following condition hold:
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(V) satisfies right (left resp) n-potent property corresponding to

*.

Proof: For convenience, we assume A as a subset of Q [0,

1] with a finite or countable number of elements, where 0 and 1

are least and greatest elements, respectively, each of which

corresponds to and , respectively. Let

X = {(m, x): m A {0 (= )} and x Q (0, m]

{(0, 0)}.

For (m, x), (n, y) X, we define:

(m, x) (n, y) iff either m <󰀃 A n, or m =A n and x y.

For convenience, we henceforth drop the index A in A and

=A, if we need not distinguish them. Context should clarify the

intention.

Now we need to define for Pr
nMIAL and Pl

nMIAL. For

Pr
nMIAL and Pl

nMIAL, 3 n, the definition of is as follows.

For (m, x), (n, y) X,

(m,x) (n,y) = max{(m,x), (n,y)} if m*n = m n, m A n, and

(m, x) or (n, y) ;󰀃 󰀃

min{(m,x), (n,y)} if m * n = m z, and

(m, x) or (n, y) ;󰀃 󰀃

(m * n, m * n) otherwise.
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For Pr
2MIAL (= Pl

2MIAL), the definition of is as follows.

For (m, x), (n, y) X,

(m,x) (n,y) = max{(m,x), (n,y)} if m * n = m n, and

(m, x) or (n, y) ;

min{(m,x), (n,y)} if m * n = m z, and

(m, x) or (n, y) ;󰀃 󰀃

(m * n, m * n) otherwise.

For the proof of the conditions (I) to (IV), see Proposition 2 in

Yang (2016). We prove the condition (V).

For Pl
nMIAL, we have to further prove left n-potency, i.e., n(m,

x) = n-1(m, x) for 2 n and for (m, x) X.

Case 1. e (m, x). If 2m = m, then (m, x) (m, x) = (m,

x) and thus n-1(m, x) = n(m, x). Otherwise, we have t < m < 2m

and thus (m, x) (m, x) = (2m, 2m). Hence, similarly we

further have that (m, x) (2m, 2m) = (3m, 3m) and thus n-1(m,

x) = (n-1m, n-1m) and n(m, x) = (nm, nm). Therefore, we have n(m,

x) = n-1(m, x) since nm = n-1m.

Case 2. (m, x) e. If󰀃
2m < m, we obtain (m, x) (m, x)

= (2m, 2m), (m, x) (2m, 2m) = (3m, 3m) and thus, as above,
n(m, x) = n-1(m, x). Otherwise, since 2m = m t, we have (m,

x) (m, x) = (m, x) and thus n-1(m, x) = n(m, x).

For Pr
nMIAL, we have to further prove right n-potency, i.e.,

(m, x)n = (m, x)n-1 for 2 n and for (m, x) X. The proof
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is analogous to that of left n-potency. This completes the proof.

Proposition 3.4 Every countable linearly ordered L-algebra can

be embedded into a standard algebra.

Proof: In an analogy to the proof of Proposition 3 in Yang

(2016), we prove this. Let X, A, etc. be as in Proposition 3.3.

Since (X, ) is a countable, dense, linearly-ordered set with󰀃

maximum and minimum, it is order isomorphic to (Q [0, 1],

). Let g be such an isomorphism. If (I) to (V) in Proposition

3.3 hold, letting, for , [0, 1], = g(gα β α β
-1( ) gα

-1

( )), and, for all m A, h (m) = g(h(m)), we obtain thatβ Q

[0, 1], , 1, 0, e, , , h satisfy the conditions (I) to

(V) of Proposition 3.3 whenever X, , Max, Min, e, , , and󰀃

h do. Thus, without loss of generality, we can assume that X =

Q [0, 1] and = , and so = .󰀃

Now, we define for , [0, 1],α β

= supα β x X:x αsupy X:y β x y.

The monotonicity and identity of are easy consequences

of the definition. Furthermore, it follows from the definition that

is conjunctive, i.e., 0 1 = 1 0 = 0. For the

left-continuity of , see Proposition 3 in Yang (2016).

We prove left and right n-potency properties. Suppose that <αi

: i N> is an increasing sequence of reals in [0, 1] such that



15

sup{αi : i N} = . First note thatα
n-1 = sup{α

n-1q : q Q

[0, 1], q } andα n = sup{α nq : q Q [0, 1], q }.α

For the left n-potency of , we have to show n-1 =α
n , 2α

n. Since n-1q = nq, we have that sup{n-1q : q Q [0, 1], q

} = sup{α
nq : q Q [0, 1], q }; therefore,α

n-1 =α
n

. The proof of the rightα n-potency of is analogous.

It is an easy consequence of the definition that extends .

By (I) to (V), h is an embedding of (A, A, , , t, f, ,

, *) into ([0, 1], , 1, 0, , , min, max, ). Finally,

for the fact that has a residuated pair of implications,

calling it ( , ), see Proposition 3 in Yang (2016).

Theorem 3.4 (Strong standard completeness) For L Ls, the

following are equivalent:

(1) T L .φ

(2) For every standard L-algebra and evaluation v, if v( )ψ

for all T, thenψ v( ) .φ

Proof: The (1)-to-(2) direction is obvious. We prove the

(2)-to-(1) direction. Let be a formula such that Tφ L ,φ A a

linearly ordered L-algebra, and v an evaluation in A such that v

( ) t for all T and v( ) < t. Letψ ψ φ h´ be the embedding

of A into the standard L-algebra as in proof of Proposition 3.3.

Then, h´ v is an evaluation into the standard L-algebra such

that h´ v( ) and yetψ h´ v( ) < .φ
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4. Fixpointed involutive extensions

Here we provide standard completeness for the fixpointed

involutive extensions of L Ls.

First, we introduce two negations as defined connectives:

df2. :=φ φ f, and

df3. :=φ φ f.

We next introduce some involutive extensions and their

corresponding algebras.

Definition 4.1 (i) (Yang (2017a)) Involutive MIAL system

IMIAL is the MIAL with the following axiom schemes:

A18. (double negation elimination, DNE(1))φ φ

A19. (double negation elimination, DNE(2))φ φ

(ii) (Yang (2017b)) For L Ls, fixpointed and involutive

extensions of L are introduced as follows:12)

Right n-potent, fixpointed, involutive mianorm logic

Pr
nFIMIAL is IMIAL plus (Prn) and (fixpoint, FP) t f.

Left n-potent, fixpointed, involutive mianorm logic

Pl
nFIMIAL is IMIAL plus (Pln) and (FP).

Definition 4.2 (i) Let x = x f and x = x f for all

12) Pr
nFIMIAL and Pl

nFIMIAL were denoted by IMIALclrnf and IMIALclnf,

respectively, in Yang (2017b).
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x A. An IMIAL-algebra is an MIAL-algebra satisfying: for all

x A, (DNE(1)A) x x and (DNE(2)A) x x.

(ii) A Pr
nFIMIAL-algebra is an IMIAL-algebra satisfying (Prn

A)

and (fA) t = f; a Prl
nFIMIAL-algebra is an IMIAL-algebra

satisfying (Pln
A) and (fA). For convenience, we call these algebras

FIL-algebras.

Now we consider standard completeness for FIL {

Pr
nFIMIAL, Pl

nFIMIAL}.

Fact 4.3 (Yang (2017a)) For every finite or countable linearly

ordered IMIAL-algebra A = (A, A, , , t, f, , , *, ,

), there is a countable ordered set X, a binary operation ,

and a map h from A into X such that the conditions (I) to (IV)

in Fact 3.1 and the following condition hold:

( I) For all x X, x is involutive, i.e., it satisfies (DNE(1)A)

and (DNE(2)A).

Proposition 4.4 For every finite or countable linearly ordered

FIL-algebra A = (A, A, , , t, f, , , *, , ), there is

a countable ordered set X, a binary operation , and a map h

from A into X such that the conditions (I) to (V) in Proposition

3.3, (VI) in Fact 4.3, and (fA).

Proof: We first note that, for IMIAL, m+ denotes the successor

of m if it exists, otherwise m+ = m, for each m A. Note that,

since the pair of negations in A, defined as m := m and
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~m := m , is involutive, we have that: m = ( n)+ iff n =

( m)+ and m = (~n)+ iff n = (~m)+; moreover, if m < m+, then

( (m+))+ = m and (~(m+))+ = ~m. Here, we use Y below in

place of the X above. Let (Y, ) be the linearly ordered set,󰀃

defined by

Y = {(m, m): m A}

{(m, x): m' A such that m = m'+ > m', and x Q (0, m)},

and being the corresponding lexicographic ordering as above.󰀃

Then, it suffices to check the condition (V). In order to

distinguish the two 's introduced in Proposition 3.3, we denote

the first and second circles as Y1 and Y2, respectively.

Now, we define new operations Y1 on Y, based on Y1, and

Y2 on Y, based on Y2, as follows (but, for convenience,

henceforth dropping each index if we need not distinguish them

):13)

(m,x) (n,y) = min{ ,(m,x) (n,y)} if m=( n)+ and p/q+p’/q’ 1,

where x = mp/q and y=np’/q’,

or m < ( n)+; or

if m=(~n)+ and p/q+p’/q’ 1,

where x = mp/q and y=np’/q’,

or m < (~n)+; or

(m,x) (n,y) otherwise.

13) This definition was introduced in Yang (2017a)
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Note that Y1 is for Pr
nFIMIAL and Pl

nFIMIAL, 3 n, and

Y2 is for Pr
2FIMIAL (= Pl

2FIMIAL).

The operation satisfies conditions (I) to (IV), (VI), and (fA)

(see Proposition 2 in Yang (2017a) and Proposition 3.2 in Yang

(2017b)). Thus, we need to consider the condition (V).

We prove the left n-potency of , i.e., n(m, x) = n-1(m, x), 2

n.

Case 1. m = (~m)+ and 2p/q 1, where x = mp/q, or m <

(~m)+.

Subcase 1.1. m = 2m. Since t < m is not the case, we have m

= 2m t = f < (~m)+ and thus (m, x) Y2 (m, x) = min{ ,

(m, x) Y2 (m, x)} = (m, x) Y2 (m, x) = (m, x); therefore,
n(m, x) = n-1(m, x) since 3m = 2m and thus nm = n-1m for 2 < n.

Subcase 1.2. m 2m. We have to show n(m, x) = n-1(m, x)

for 2 < n. Since the condition implies 2m < m < t, we have (m,

x) Y1 (m, x) = min{ , (m, x) Y1 (m, x)} = (m, x) Y1 (m,

x). Therefore, as above, we have that n(m, x) = n-1(m, x).

Case 2. m = ( m)+ and 2p/q 1, where x = mp/q, or m <

( m)+. The proof is analogous to that of Case 1.

Case 3. Otherwise. The proof is reducible to that of the left

n-potency for Pl
nMIAL in Proposition 3.3.

The proof for the right n-potency of , i.e., (m, x)n = (m,

x)n-1, 2 n, is analogous to the left one.

Proposition 4.5 Every countable linearly ordered FIL-algebra can

be embedded into a standard algebra.
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Proof: The proof of this claim is analogous to that of

Proposition 3.4.

Theorem 4.6 (Strong standard completeness) For FIL {

Pr
nFIMIAL, Pl

nFIMIAL}, the following are equivalent:

(1) T FIL .φ

(2) For every standard FIL-algebra and evaluation v, if v( )ψ

for all T, then v( ) .ψ φ

Proof: The (1)-to-(2) direction follows from the definition. For

the (2)-to-(1) direction, let be a formula such that Tφ FIL ,φ

A a linearly ordered FIL-algebra, and v an evaluation in A such

that v( ) t for all T and v( ) < t. Letψ ψ φ h´ be the

embedding of A into the standard FIL-algebra as in proof of

Proposition 4.4. Then, h´ v is an evaluation into the standard

FIL-algebra such that h´ v( ) and yetψ h´ v( ) < .φ

5. Concluding remark

We investigated (not merely algebraic completeness for Pr
nMIAL

and Pl
nMIAL but also) standard completeness for Pr

nMIAL and

Pl
nMIA via Yang's construction in the style of Jenei Montagna.

We further considered their fixpointed involutive extensions. Note

that this construction does not work for their involutive extensions

(see Yang (2017b)). To introduce such semantics for their

involutive extensions is a problem left in this paper.
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좌 우, n멱등 공리를 갖는 미아놈 논리-

이 글에서 우리는 좌 우, n 멱등 공리를 갖는 미아놈에 기반한-

논리를 다룬다 이를 위하여 먼저 미아놈에 바탕을 둔 좌 우. , n 멱-

등 공리를 갖는 논리 체계 Pr
nMIAL, Pl

nMIAL을 소개한다 각 체.

계에 상응하는 대수적 구조를 정의한 후 이들 체계가 대수적으로,

완전하다는 것을 보인다 다음으로 이 논리 체계들이 표준적으로. ,

완전하다는 것 즉 단위 실수 에서 완전하다는 것을 제네이 몬[0, 1 -

테그나 방식의 구성을 사용하여 보인다 마지막으로 이를 고정점을.

갖는 누승적 확장에 대한 연구로 확대한다.

주요어 퍼지 논리 미아놈 대수적 완전성 표준 완전성: , , , , n 멱등- .


