DOI QR코드

DOI QR Code

Toxic Evaluation of Antifouling Paint (Irgarol and Diuron) using the Population Growth Rate of Marine Diatom, Skeletonema costatum

해산 규조류(Skeletonema costatum)의 개체군 성장률 분석을 이용한 신방오도료(Irgarol, Diuron)의 독성평가

  • Lee, Ju-Wook (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Choi, Hoon (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Park, Yun-Ho (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Lee, Seung-Min (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Choi, Yoon-Seok (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Heo, Seung (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Hwang, Un-Ki (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science)
  • 이주욱 (국립수산과학원 서해수산연구소 자원환경과 해양생태위해평가센터) ;
  • 최훈 (국립수산과학원 서해수산연구소 자원환경과 해양생태위해평가센터) ;
  • 박윤호 (국립수산과학원 서해수산연구소 자원환경과 해양생태위해평가센터) ;
  • 이승민 (국립수산과학원 서해수산연구소 자원환경과 해양생태위해평가센터) ;
  • 최윤석 (국립수산과학원 서해수산연구소 자원환경과 해양생태위해평가센터) ;
  • 허승 (국립수산과학원 서해수산연구소 자원환경과 해양생태위해평가센터) ;
  • 황운기 (국립수산과학원 서해수산연구소 자원환경과 해양생태위해평가센터)
  • Received : 2020.03.16
  • Accepted : 2020.05.13
  • Published : 2020.06.16

Abstract

We evaluated the toxic effects of antifouling paint (irgarol and diuron) on the population growth rate (r) of the marine diatom, Skeletonema costatum. The r of S. costatum was determined after 96 hrs of exposure to irgarol (0, 0.31, 0.63, 1.25, 2.5 and 5 ㎍ l-1) and diuron (0, 7.81, 15.63, 31.25, 62.5 and 125 ㎍ l-1). It was observed that r in the control (absence of irgarol and diuron) were greater than 0.04, while r in the treatment groups decreased with increasing irgarol and diuron concentrations. Irgarol and diuron reduced r in a dose-dependent manner with significant decreases occurring at concentrations above 0.63 and 15.63 ㎍ l-1, respectively. The EC50 values of r in irgarol and diuron exposure were 1.09 and 45.45 ㎍ l-1. No observed effect concentration (NOEC) were 0.31 and 7.81 ㎍ l-1, the lowest observed effect concentration (LOEC) were 0.63 and 15.63 ㎍ l-1. This result indicate that a concentration of greater than 0.63 ㎍ l-1 of irgarol and 15.63 ㎍ l-1 of diuron in marine ecosystems induced to decreasing r of S. costatum. Also, these toxic values can be useful as a baseline data for the toxic evaluation of irgarol and diuron in marine ecosystems.

Irgarol과 diuron에 각각 노출된 해산규조류(Skeletonema costatum)의 개체군 성장률(r)을 분석하여 독성평가를 실시하였다. S. costatum을 irgarol (0, 0.31, 0.63, 1.25, 2.5, 5 ㎍ l-1)과 diuron (0,7.81, 15.63, 31.25, 62.5, 125 ㎍ l-1)에 각각 96시간 노출하여 r을 계산하였고, 대조구의 r은 0.04 이상으로 시험기준에 적합하였다. S. costatum의 r은 irgarol에서 0.63 ㎍ l-1, diuron은 15.63 ㎍ l-1 이상에서 대조구 대비 유의하게 감소하기 시작하여 irgarol과 diuron의 농도가 증가할수록 r이 감소하는 농도의존적인 반응을 나타냈고, 시험 최고농도 5와 125 ㎍ l-1에서 r이 대조구 대비 80% 이상 감소하였다. Irgarol과 diuron에 노출시킨 S. costatum r의 반수영향농도(EC50)는 1.09, 45.45 ㎍ l-1, 무영향농도(NOEC)는 0.31, 7.81 ㎍ l-1, 최소영향농도(LOEC)는 0.63, 15.63 ㎍ l-1으로 나타났으며, EC50 기준으로 irgarol이 diuron보다 독성이 큰 것으로 나타났다. 본 연구결과로 해양생태계에서 Irgarol과 diuron의 농도가 0.63과 15.63 ㎍ l-1 이상이 되면, 해산 규조류 S. costatum의 r은 독성영향을 받을 것으로 판단된다. 또한, 독성 값으로 제시된 결과들은 irgarol과 diuron의 기준농도 설정을 위한 기초자료로 유용하게 활용될 것이다.

Keywords

Acknowledgement

본 연구는 2020년도 국립수산과학원 경상과제(R2020027)연구비 지원으로 국립수산과학원 서해수산연구소 자원환경과 해양생태위해평가센터에서 수행하였다.

References

  1. Ali HR, Arifin MM, Sheikh MA, Shazili NAM, Bachok Z. 2013. Occurrence and distribution of antifouling biocide irgarol1051 in coastal waters of Peninsular Malaysia. Mar Pollut Bull 70: 253-257. https://doi.org/10.1016/j.marpolbul.2013.02.024
  2. Ali HR, Ariffin MM, Shikh MA, Shazili NAM, Bachok Z. 2015. Toxicological studies of irgarol-1051 and its effects on fatty acid composition of Asian sea-bass, Lates calcarifer. Reg Stud Mar Sci 2: 171-176. https://doi.org/10.1016/j.rsma.2015.09.008
  3. Amara I, Miled W, Slama RB, Ladhari N. 2018. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ Toxicol Parmacol 57: 115-130. https://doi.org/10.1016/j.etap.2017.12.001
  4. Basheer C, Tan KS, Lee HK. 2002. Organotin and irgarol-1051 contamination in Singapore coastal waters. Mar Pollut Bull 44: 697-703. https://doi.org/10.1016/S0025-326X(01)00330-7
  5. Batista-Andrade JA, Caldas SS, Batista RM, Castro IB, Fillmann GF, Primel EG. 2018. From TBT to booster biocides: Levels and impacts of antifouling along coastal areas of Panama. Environ Pollut 234: 234-252.
  6. Caquet TH, Roucaute M, Mazzella N, Delmas F, Madigou C, Farcy E, Burgeot TH, Allenou JP, Gabellec R. 2012. Risk assessment of herbicides and booster biocides along estuarine continuums in the Bay of Vilaine area (Brittany, France). Environ Sci Pollut Res 20: 651-666.
  7. Chen L, Xu Y, Wang W, Qian PY. 2015. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions. Chemosphere 119: 1075-1083. https://doi.org/10.1016/j.chemosphere.2014.09.056
  8. Chesworth JC, Donkin ME, Brown MT. 2004. The interactive effects of the antifouling herbicides irgarol and diuron on the seagrass Zostera marina (L.). Aquat Toxicol 66: 293-305. https://doi.org/10.1016/j.aquatox.2003.10.002
  9. Cho E, Khim J, Chang S, Seo D, Son Y. 2014. Occurrence of micropollutants in four major rivers in Korea. Sci Total Environ 491-492: 138-147. https://doi.org/10.1016/j.scitotenv.2014.03.025
  10. Delorenzo ME, Serrano L. 2006. Mixture Toxicity of the Antifouling Compound irgarol to the Marine Phytoplankton Species Dunaliella tertiolecta. J Environ Sci Health B 41: 1349-1360. https://doi.org/10.1080/03601230600964100
  11. Deng X, Gao K, Sun J. 2012. Physiological and biochemical responses of Synechococcus sp. PCC7942 to irgarol and diuron. Aquat Toxicol 122-123: 113-119. https://doi.org/10.1016/j.aquatox.2012.06.004
  12. Diniz LGR, Jesus MS, Donguez LAE, Fellmann G, Vieira EM, Franco TCRS. 2014. First appraisal of water contamination by antifouling booster biocide of 3rd generation at Itaqui Harbor (Sao Luiz - Maranhao - Brazil). J Braz Chem Soc 25: 380-388.
  13. Ensminger I, Xylander M, Hagen C, Braune W. 2001. Strategies providing success in a variable habitat: III. Dynamic control of photosynthesis in Cladophora glomerata. Plant Cell Environ 24: 769-779. https://doi.org/10.1046/j.1365-3040.2001.00725.x
  14. Fernandez-Alba AR, Hernando MD, Piedra L, Chisti Y. 2002. Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal Chim Acta 456: 303-312. https://doi.org/10.1016/S0003-2670(02)00037-5
  15. Flores F, Collier CJ, Mercurio P, Negri AP. 2013. Phytotoxicity of Four Photosystem II Herbicides to Tropical Seagrasses. PLOS One 8: e75798.
  16. Gatidou G, Thomaidis NS. 2007. Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays. Aquat Toxicol 85: 184-171. https://doi.org/10.1016/j.aquatox.2007.09.002
  17. Hartgers EM, Aalderink GH, Brink PJ, Gylstra R, Wiegman JWF, Brock TCM. 1998. Ecotoxicological threshold levels of a mixture of herbicides (atrazine, diuron and metolachlor) in freshwater microcosms. Aquat Ecol 32: 135-152. https://doi.org/10.1023/A:1009968112009
  18. Ishibashi H, Minamide S, Takeuchi I. 2018. Identification and characterization of heat shock protein 90 (HSP90) in the hard coral Acropora tenuis in response to irgarol. Mar Pollut Bull 133: 773-780. https://doi.org/10.1016/j.marpolbul.2018.06.014
  19. Jones R. 2005. The ecotoxicological effects of Photosystem II herbicides on corals. Mar Pollt Bull 51: 495-506. https://doi.org/10.1016/j.marpolbul.2005.06.027
  20. Jung SM, Bae JS, Kang SG, Son JS, Jeon JH, Lee HJ, Jeon JY, Sidharthan M, Ryu SH, Shin HW. 2017. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae. Mar Pollut Bull 124: 811-818. https://doi.org/10.1016/j.marpolbul.2016.11.047
  21. Kamei M, Takayama K, Ishibashi H, Takeuchi I. 2020. Effects of ecologically relevant concentrations of irgarol in tropical to subtropical coastal seawater on hermatypic coral Acropora tenuis and its symbiotic dinoflagellates. Mar Pollut Bull 150: 110734. https://doi.org/10.1016/j.marpolbul.2019.110734
  22. Karlsson J, Breitholtz M, Eklund B. 2006. A practical ranking system to compare toxicity of anti-fouling paints. Mar Pollut Bull 52: 1661-1667. https://doi.org/10.1016/j.marpolbul.2006.06.007
  23. Key PB, Hoguet J, Chung KW, Venturella JJ, Pennington PL, Fulton MH. 2009. Lethal and sublethal effects of simvastatin, irgarol, and PBDE-47 on the estuarine fish, Fundulus heteroclitus. J Environ Sci Health B 44: 379-382. https://doi.org/10.1080/03601230902801083
  24. Khanam MRM, Shimasaki Y, Hosain MZ, Mukai K, Tsuyama M, Qiu X, Tasmin R, Goto H, Oshima Y. 2017. diuron causes sinking retardation and physiochemical alteration in marine diatoms Thalassiosira pseudonana and Skeletonema marinoidohrnii complex. Chemosphere 175: 200-209. https://doi.org/10.1016/j.chemosphere.2017.02.054
  25. Kim NS, Shim WJ, Yim UH, Hong SH, Ha SY, Han GM, Shin KH. 2014. Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea. Mar Pollut Bull 78: 201-208. https://doi.org/10.1016/j.marpolbul.2013.10.043
  26. Kim NS, Hong SH, An JG, Shin KH, Shim WJ. 2015. Distribution of butyltins and alternative antifouling biocides in sediments from shipping and shipbuilding areas in South Korea. Mar Pollut Bull 95: 484-490. https://doi.org/10.1016/j.marpolbul.2015.03.010
  27. Konstantinou IK, Albanis TA. 2004. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30: 235-248. https://doi.org/10.1016/S0160-4120(03)00176-4
  28. Kottuparambil S, Lee S, Han T. 2013. Single and interactive effects of the antifouling booster herbicides diuron and irgarol on photosynthesis in the marine cyanobacterium, Arthrospira maxima. Toxicol. Environ Health Sci 5: 71-81. https://doi.org/10.1007/s13530-013-0157-6
  29. Kottuparambil S, Bronw MT, Park J, Choi S, Lee H, Choi HG, Depuydt S, Han T. 2017. Comparative assessment of single and joint effects of diuron andirgarol on Arctic and temperate microalgae using chlorophyll a fluorescence imaging. Ecol Indic 76: 304-316. https://doi.org/10.1016/j.ecolind.2017.01.024
  30. ISO. 1995. Water quality-marine algal growth inhibition test with Skeletonema costatum and Phaeodactylum tricornutum. The International Organization for Standardization. ISO 10253, 7pp.
  31. Lananan F, Jusoh A, Ali N, Lam SS, Endut A. 2013. Effect of Conway medium and f/2 medium on the growth of six genera of south China Sea marine microalgae. Bioresour Technol 141: 75-82. https://doi.org/10.1016/j.biortech.2013.03.006
  32. Lee JW, Choi H, Park YH, Lee Y, Heo S, Hwnag UK. 2019. Toxic evaluation of phenanthrene and zinc undecylenate using the population growth rates of marine diatom, Skeletonema costatum. Korean J Environ Biol 37: 372-379. https://doi.org/10.11626/KJEB.2019.37.3.372
  33. Lee JW, Ryu HM, Heo S, Jang SJ, Lee KW, Hwang UK. 2017. Effect of heavy metals (As, Cr, Pb) on the population growth rates of marine diatom, Skeletonema castatum. JMLS 2: 20-26.
  34. Lee SE, Won HS, Lee YW, Lee DS. 2010. Study on the new antifouling compounds in Korean coasts. Bull Environ Contam Toxicol 85: 538-543. https://doi.org/10.1007/s00128-010-0145-3
  35. Lee S, Lee YW. 2016. Determination of the concentrations of alternative antifouling agents on the Korean coast. Mar Pollut Bull 113: 253-257. https://doi.org/10.1016/j.marpolbul.2016.09.030
  36. Marcheselli M, Conzo F, Mauri M, Simonini R. 2010. Novel antifouling agent-Zinc pyrithione: Short- and long-term effects on survival and reproduction of the marine polychaete Dinophilus gyrociliatus. Aquat Toxicol 98: 204-210. https://doi.org/10.1016/j.aquatox.2010.02.010
  37. MOF. 2018. Marine Environment Standard Method, Part 3 Marine Organism Standard Method. Ministary of Oceans and Fisheries, Korea. pp 115-123.
  38. Moon YS, Kim M, Hong CP, Kang JH, Jung JH. 2019. Overlapping and unique toxic effects of three alternative antifouling biocides (diuron, irgarol®, Sea-Nine 211®) on non-target marine fish. Ecotoxicol Environ Saf 180: 23-32. https://doi.org/10.1016/j.ecoenv.2019.04.070
  39. Nebeker AV, Schuytema GS. 1998. Chronic Effects of the Herbicide Diuron on Freshwater Cladocerans, Amphipods, Midges, Minnows, Worms, and Snails. Arch Environ Contam Toxicol 35: 441-446. https://doi.org/10.1007/s002449900400
  40. Okamura H. 2002. Photodegradation of the antifouling compounds irgarol and diuron released from a commercial antifouling paint. Chemophere 48: 43-50. https://doi.org/10.1016/S0045-6535(02)00025-5
  41. Okumura Y, Koyama J, Takaku H, Satoh H. 2001. Influence of organic solvents on the growth of marine microalgae. Arch Environ Contam Toxicol 41: 123-128. https://doi.org/10.1007/s002440010229
  42. Sheikh MA, Higuchi T, Fujimura H, Imo TS, Miyagi T, Oomori T. 2009. Contamination and impacts of new antifouling biocide irgarol-1051 on subtropical coral reef waters. Int J Environ Sci Tech 6: 353-358. https://doi.org/10.1007/BF03326073
  43. Shin HW, Kang SG, Son JS, Jeon JH, Lee HJ, Jung SM, Smith CM. 2015. Evaluation of antifouling system of new antifouling agents using spores of the green alga, Ulva pertusa and diatom, Nitzschia pungens. Korean J Environ Ecol 29: 736-742. https://doi.org/10.13047/KJEE.2015.29.5.736
  44. Silkina A, Bazes A, Mouget JL, Bourgougnon N. 2012. Comparative efficiency of macroalgal extracts and booster biocides as antifouling agents to control growth of three diatom species. Mar Pollut Bull 64: 2039-2046. https://doi.org/10.1016/j.marpolbul.2012.06.028
  45. Soroldoni S, Abreu F, Castro IB, Duarte FA, Pinho GLL. 2017. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment? J Hazard Mater 330: 76-82. https://doi.org/10.1016/j.jhazmat.2017.02.001
  46. Thomas KV. 2001. The Environmental Fate and Behaviour of Antifouling Paint Booster Biocides: a Review. Biofouling 17: 73-86. https://doi.org/10.1080/08927010109378466
  47. Wilkinson AD, Collier CJ, Flores F, Negri AP. 2015. Acute and additive toxicity of ten photosystem-II herbicides to seagrass. Sci. Rep. Article number 17443. DOI: 10.1038/srep17443.
  48. Yee MSL, Khiew PS, Chiu WS, Tan YF, Kok YY, Leong CO. 2016. Green synthesis of graphene-silver nanocomposites and its application as a potent marine antifouling agent. Colloids Surf B 148: 392-401. https://doi.org/10.1016/j.colsurfb.2016.09.011
  49. Yoon YH. 2016. Bio-environmental Characteristics of the Uljin Marine Ranching Area (UMRA), East Sea of Korea. 1. Spatiotemporal Distributions of Phytoplankton Community. J Korean Soc Mar Environ Energy 19: 37-46. https://doi.org/10.7846/JKOSMEE.2016.19.1.37
  50. Zhang AQ, Zhou GJ, Lam MHW, Leung KMY. 2019a. Toxicities of the degraded mixture of irgarol to marine organisms. Chemophere 225: 565-573. https://doi.org/10.1016/j.chemosphere.2019.03.038
  51. Zhang AQ, Zhou GJ, Lam MHW, Leung KMY. 2019b. Toxicities of irgarol derivatives, M2 and M3, to two marine diatom species. Ecotoxicol Environ Saf 182: 109455. https://doi.org/10.1016/j.ecoenv.2019.109455
  52. Zhang AQ, Leung KMY, Kwok KWH, Bao VWW, Lam MHW. 2008. Toxicities of antifouling biocide irgarol and its major degraded product to marine primary producers. Mar Pollut Bull 57: 575-586. https://doi.org/10.1016/j.marpolbul.2008.01.021