DOI QR코드

DOI QR Code

유용 홍조류 참풀가사리(Gloiopeltis tenax) 반상근의 생장에 미치는 온도와 광도의 영향

Effects of Temperature and Irradiance on the Growth of Basal Crust of Economic Red Alga Gloiopeltis tenax

  • 이현정 (국립생태원 생태공간연구팀) ;
  • 김영식 (국립군산대학교 해양생명응용과학부)
  • Lee, Hyeon Jeong (Ecological Space Research Team, National Institute of Ecology) ;
  • Kim, Young Sik (Faculty of Marine Applied Biosciences, Kunsan National University)
  • 투고 : 2020.11.18
  • 심사 : 2020.12.04
  • 발행 : 2020.12.16

초록

홍조류 참풀가사리(Gloiopeltis tenax)는 중국과 일본에서 경제적으로 유용한 종으로 알려져 있으며 이것은 예로부터 접착제나 식용 등으로 이용되었다. 실험에 사용된 재료는 전북 부안군 변산면 격포리에서 채집한 성숙한 사분포자체로부터 사분포자를 방출 받은 후 배양하여 형성된 반상근을 대량으로 확보하였다. 이를 해부현미경 하에서 4등분하여 재생과 생장 과정을 추적하였다. 절단된 반상근을 각 조건별로 배양하였고 광주기는 16:8 h L:D이며 온도조건은 10, 15, 20, 25℃이고 광도조건은 30, 85 µmol photons m-2s-1이다. 4등분된 반상근은 타원형으로 생장하다가 원주상의 직립 축을 형성하였다. 반상근의 크기는 배양 12주 후, 광도 85 µmol photons m-2s-1의 15℃ 온도에서 9.61±3.59 mm2로 최대였다. 평균 상대생장률은 광도 85 µmol photons m-2s-1의 15℃ 온도에서 5.15±0.80 %day-1으로 최대 생장률을 나타내었고 10℃ 온도에서 3.15±0.94 %day-1으로 최저 생장률을 나타냈으며 통계적으로 유의한 차이를 보였다(p < 0.05). 결론적으로 참풀가사리의 반상근을 이용한 방법이 효과적인 양식 방법임이 확인되었다.

Gloiopeltis tenax is one of the most economically useful species in China and Japan that has been applied to glue and food since ancient times. The material used in the experiment was a large quantity of basal crusts obtained from the culture of tetraspores that were released from the mature tetrasporophytes collected at Gyeokpori, Byeonsan-myeon, Buan-gun, Jeollabuk-do in Korea. The basal crusts were cut into quadrisect under a dissecting microscope so as to monitor the process of regeneration and growth. The cut crusts were cultured under varying conditions, where the photoperiod was 16:8 h L:D; the temperature range was 10, 15, 20, and 25℃; the irradiance range was 30 and 85 µmol photons m-2s-1. The quadrisect basal crusts grew to an oval shape, then formed a vertical axis of cylindrical shape. The maximum growth of basal crusts was 9.61±3.59 mm2 under the condition of 15℃ temperature and 85 µmol photons m-2s-1 irradiance, after 12-weeks culture. The mean relative growth rate after 12-weeks culture showed the maximum rate of 5.15±0.80 %day-1 at 15℃ and the minimum growth rate was 3.15±0.94 %day-1 at 10℃, with a statistically significant difference (p < 0.05). In conclusion, it has shown the possibility that growth of basal crusts of G. tenax is one of the good farming method of potential alga.

키워드

과제정보

본 연구는 2020년도 군산대학교 수산과학연구소 학술연구비 지원에 의하여 연구되었기에 이에 감사드립니다.

참고문헌

  1. Ang PO Jr., Leung SM, Choi MM. 2014. A verification of reports of marine algal species from the Philippines. Philippine J Sci 142: 5-49.
  2. Atmadja WS, Prud'homme van Reine WF. 2012. Checklist of the seaweed species biodiversity of Indonesia with their distribution and classification: red algae (Rhodophyceae). Coral Reef Information and Training Centre, Jakarta.
  3. Chen S, Wu J, Chen L, Liu T. 2008. Pilot study on indoor cultivation of two species of Gloiopeltis mature and spore release. S China Fish Sci 4: 1-5.
  4. Chen S, Wu J, Chen L, Zhu C. 2011. Effects of light and temperature on the attachment and development of Gloiopeltis tenax and Gloiopeltis furcata tetraspores. J Appl Phycol 23: 1045-1051. https://doi.org/10.1007/s10811-010-9638-z
  5. Chiang YM. 1993. The developmental sequence of the marine red alga Grateloupia filicina in culture. Korean J Phycol 8: 231-237.
  6. Choi HG, Kim YS, Kim JH, Lee SJ, Park EJ, Ryu J, Nam KW. 2006. Effects of temperature and salinity on the growth of Gracilaria verrucosa and G. chorda, with the potential for mariculture in Korea. Proc. Eighteenth International Seaweed Symposium, 43-51. Springer, Dordrecht.
  7. Gong YG. 1999. An ecophysiological study for the seed production of Gloiopeltis (Rhodophyta) in Korea. Ph.D. thesis, Inje University.
  8. Huang SF. 2000. Seaweeds of northeastern Taiwan. National Taiwan Museum, Taipei, 12: 1-233.
  9. Iima M, Kinoshita T, Kawaguchi S, Migita S. 1995. Cultivation of Grateloupia acuminata (Halymeniaceae, Rhodophyta) by regeneration from cut fragments of basal crusts and upright thalli. J Appl Phycol 7: 583-588. https://doi.org/10.1007/BF00003946
  10. Jung YH, Jung BM, Shin MO, Bae SJ. 2006. Anticarcinogenic effects of extracts from Gloiopeltis tenax. J Korean Soc Food Sci Nutri 35: 395-401. https://doi.org/10.3746/jkfn.2006.35.4.395
  11. Kim HG, Park JG. 2006. Tissue culture of Grateloupia acuminata (Rhodophyta) from the eastern coast of Korea. J Aqua 19: 216-221.
  12. Kim YS, Choi HG, Nam KW. 2006. Phenology of Chondrus ocellatus in Cheongsapo near Busan, Korea. Proc. Eighteenth International Seaweed Symposium, 325-330. Springer, Dordrecht.
  13. Lee JW, Oh BG, Lee HB. 1996. Morphological variations of Gloiopeltis furcata (Postels et Ruprecht) J. Agardh (Rhodophyta) in the east coast of Korea. Algae 11: 91-94.
  14. Lee Y, Kang S. 2002. A catalogue of the seaweeds in Korea. pp 8, 1-662. Jeju: Cheju National University Press.
  15. Li X, Zhao P, Wang G, Li D, Wang J, Duan D. 2010. Effects of temperature and irradiance on early development of Chondrus ocellatus Holm (Gigartinaceae, Rhodophyta). Chinese J Ocean Limn 28: 508-513. https://doi.org/10.1007/s00343-010-9043-0
  16. Liu RY. 2008. Checklist of biota of Chinese seas. Beijing: Science Press, Academia Sinica. 1-1267.
  17. Migita S. 1988. Cultivation of Grateloupia filicina (Rhodophyta, Cryptonemiales) by regeneration of crusts. Nippon Suisan Gakkaishi 54: 1923-1927. https://doi.org/10.2331/suisan.54.1923
  18. Morita T, Kurashima A, Maegawa M. 2003. Temperature requirements for the growth and maturation of the gametophytes of Undaria pinnatifida and U. undarioides (Laminariales, Phaeophyceae). Phycol Res 51: 154-160.
  19. Nguyen TV, Le NH, Lin SM, Steen F, De Clerck O. 2013. Checklist of the marine macroalgae of Vietnam. Bot Mar 56: 207-227.
  20. Oh BG, Lee HB. 1996. Morphology of three species of Gloiopeltis (Endocladiaceae, Rhodophyta) in Korea. Algae 11: 81-90.
  21. Provasoli L. 1968. Media and prospects for the cultivation of marine algae. In Cultures and Collections of Algae. Proceedings of US-Japan Conference, Hakone, September 1966. Japan Society of Plant Physiology.
  22. Ren DL, Wang JZ, Noda H, Amano H, Ogawa S. 1995. The effects of an algal polysaccharide from Gloiopeltis tenax on transplantable tumors and immune activities in mice. Planta Medica 61: 120-125. https://doi.org/10.1055/s-2006-958029
  23. Shea R, Chopin T. 2007. Effects of germanium dioxide, an inhibitor of diatom growth, on the microscopic laboratory cultivation stage of the kelp, Laminaria saccharina. J Appl Phycol 19: 27-32. https://doi.org/10.1007/s10811-006-9107-x
  24. Suto S. 1948. On the paraspores in some species of Gloiopeltis. Nippon Suisan Gakkaishi 14: 87-89. https://doi.org/10.2331/suisan.14.87
  25. Swider JR, Smith M. 2005. Funori: overview of a 300-year-old consolidant. Journal of the American Institute for Conservation 44: 117-126. https://doi.org/10.1179/019713605806082329
  26. Sylvester AW, Waaland JR. 1983. Cloning the red alga Gigartina exasperata for culture on artificial substrates. Aquaculture 31: 305-318. https://doi.org/10.1016/0044-8486(83)90321-6
  27. Tang Y, Liu H, Yu Y, Li X. 2016. Early life stage development of Gloiopeltis furcata (Gigartinales, Endocladiaceae) from northern China. J Biotech Res 7: 49-56.
  28. Tuvikene R, Roblal M, Fujita D, Saluri K, Truus K, Tashiro Y, Ogawa H. 2015. Funorans from Gloiopeltis species. Part I. Extraction and structural characteristics. Food Hydrocolloids 43: 481-492. https://doi.org/10.1016/j.foodhyd.2014.07.010
  29. Yin MY, Hu XY, Tseng CK. 2007. Filament formation and differentiation in seven species of red algae. Bot Mar 50: 113-118.
  30. Yoshida T, Suzuki M, Yoshinaga K. 2015. Checklist of marine algae of Japan (Revised in 2015). Jap J Phycol 6: 129-189.
  31. Zhang ZY, Han YX, Li XX, Sato Y, Li XL. 2009. Reproductive biology and indoor cultivation of seaweed Gloiopeltis tenax. J Dalian Fish Univ 24: 1-7.
  32. Zheng J, Chen Y, Yao F, Chen W, Shi G. 2012. Chemical composition and antioxidant/antimicrobial activities in supercritical carbon dioxide fluid extract of Gloiopeltis tenax. Marine Drugs 10: 2634-2647. https://doi.org/10.3390/md10122634