DOI QR코드

DOI QR Code

자동차 실내 열쾌적성 개선을 위한 통풍시트의 쾌적온도 분석

Analysis of Ventilating Seat Comfort Temperature for Improving the Thermal Comfort inside Vehicles

  • 인충교 (한밭대학교 산업경영공학과) ;
  • 곽승현 (한밭대학교 산업경영공학과) ;
  • 김창훈 (한밭대학교 스마트생산경영공학과) ;
  • 김규범 (한밭대학교 산업경영공학과) ;
  • 조형석 (한밭대학교 산업경영공학과) ;
  • 서상혁 (한밭대학교 산학협력단) ;
  • 명태식 (한밭대학교 기계공학과) ;
  • 민병찬 (한밭대학교 산업경영공학과)
  • 투고 : 2020.04.22
  • 심사 : 2020.06.22
  • 발행 : 2020.12.31

초록

자동차 고급화 추세에 따라 소비자의 차량 실내 환경에 대한 관심이 증가함에 따라 자동차의 기본적 성능뿐만아니라 실내 쾌적성 향상에 관심이 증대되고 있다. 또한 자동차 실내 쾌적성에 대한 연구는 운전자에게 만족을 제공하는데 그치지 않고, 운전자의 불쾌지수 및 스트레스를 낮추어서 교통사고의 위험을 줄이는데 기여할 수 있기 때문에 매우 중요한 연구 주제이다. 따라서 본 연구에서는 운전자의 뇌파측정을 통해 통풍시트의 온도변화에 따른 쾌적감 변화와 쾌적온도를 알아보고, 온도변화에 따른 남녀간 쾌적감에 대한 차이를 탐색하고자 하였다. 연구결과 첫째 통풍시 트의 온도가 22℃, 25℃, 28℃에서 각각의 실험군을 비교한 결과 28℃보다 25℃에서 통계적으로 유의하게 쾌적감이 더 높게 나타났다. 둘째 통풍시트 온도 변화에 따른 남녀간 쾌적감에 대한 실험결과 남성과 여성이 온도에 따라 느끼는 쾌적감은 통계적으로 유의한 차가 없는 것으로 나타났다. 향후 자동차의 실내온도와 통풍시트의 온도 변화에 따른 운전자의 쾌적감 변화를 파악하여 상관관계를 분석한다면, 운전자의 쾌적성을 확보하여 휴먼에러로 인한 교통사고를 낮출수 있을 뿐만 아니라 자동차의 전기에너지의 사용량을 줄일 수 있을 것이다.

As the number of automobile registrations increases and luxury expectations grow, consumers are increasingly interested in indoor environment of vehicles. Therefore, manufacturers have an increasing interest in improving the indoor comfort as well as automobile performance. Research on indoor automobile comfort can help manufacturers increase driver satisfaction and reduce driver stress and discomfort, thereby reducing the risk of traffic accidents. Using electroencephalogram (EEG) measurements, we investigated the change in comfort and comfortable temperature according to the ventilating seat temperature change for both men and women. Results showed that the sensation of comfort was statistically significantly higher at 25℃ than at 28℃. Secondly, there was no statistically significant difference in temperature-based comfort feeling between male and female subjects. In the future, if the correlation between the driver's comfort feeling and the change in ventilating seat temperature is analyzed, it is possible to reduce traffic accidents caused by human error and reduce the electric energy consumption of the automobile.

키워드

참고문헌

  1. Choi, J, M., Whang, M, C., Bae, B, H., Yu, E, K., Oh, S, H., Kim, S, Y., & Kim, C, J. (1998). Quantification of Positive and Negative Emotions by SingleChannel Brain Wave. Science of Emotion & Sensibility, 1(1), 59-67.
  2. Croitoru, C., Nastase, I., Bode, F., Meslem, A., & Dogeanu, A. (2015). Thermal comfort models for indoor spaces and vehicles-Current capabilities and future perspectives. Renewable and Sustainable Energy Reviews, 44, 304-318. https://doi.org/10.1016/j.rser.2014.10.105
  3. Danca, P., Vartires, A., & Dogeanu, A. (2016). An overview of current methods for thermal comfort assessment in vehicle cabin. Energy Procedia, 85, 162-169. https://doi.org/10.1016/j.egypro.2015.12.322
  4. Deng, Q., Wang, R., Li, Y., Miao, Y., & Zhao, J. (2017). Human thermal sensation and comfort in a non-uniform environment with personalized heating. Science of the Total Environment, 578, 242-248. https://doi.org/10.1016/j.scitotenv.2016.05.172
  5. Heller, W., Nitschke, J. B., Etienne, M. A., & Miller, G. A. (1997). Patterns of regional brain activity differentiate types of anxiety. Journal of Abnormal Psychology, 106(3), 376-385. https://doi.org/10.1037/0021-843X.106.3.376
  6. Hong, S. H., Kim, M. Y., & Kim, M. H. (2006). Thermal environment analysis and thermal comfort assessment in Automobile.(자동차 실내의 열환경 해석 및 열적 쾌적성 평가). Korean Journal of Air-Conditioning and Refrigeration Engineering, 35(10), 34-45.
  7. Hur, M, R., & Lee, A, R. (2016). Study on the relationship between EEG of brain laterality and personality traits. Science of Emotion & Sensibility, 19(1), 83-94. https://doi.org/10.14695/KJSOS.2016.19.1.83
  8. Jung, J. H., Kim, S. C., Won, J. P., Noh, S. H., & Cho, Y. S. (2009). A experimental study on the performance of climate control seats using the discharge port of the shape of nozzle. Transactions of the Korean Society of Automotive Engineers, 17(3), 110-116.
  9. Kang, C. S., Kum, J. S., Im, J. J., Jo, K. S., Choi, K. H., Kim, D. K., Kim, K. C., Lee, G. S., & Kim, H. C. (2001). A study on the thermal comfort sensation in the variation of temperature and air-velocity in packaged air conditioner. In Proceeding of the Society of Air-Conditioning And Refrigerating Engineers of Korea, 2001, 914-918.
  10. Kim, E. S., & Shin, D. S. (2002). Nonlinear and independent component analysis of EEG with artifacts. Journal of Fuzzy Logic and Intelligent Systems, 12(5), 442-450.
  11. Kim, H. H., & Kim, D. J. (2002). A study on the comfortableness evaluation using 4-channel EEGs. In Proceeding of the Korean Institute of Electrical Engineers, 2002, 7-10.
  12. Lan, L., Lian, Z., & Liu, W. (2008). Investigation of gender difference in thermal comfort for Chinese people. European Journal of Applied Physiology, 102(4), 471-480. https://doi.org/10.1007/s00421-007-0609-2
  13. Lee, D, D., Baek, U, E., Lim, J, O., Heo, J, S., Choi, N, J., Seo, J, Y... & Hwang, T, J. (1999). Drivers' emotional change according to environmental change in the automobile. Journal of the Ergonomics Society of Korea, 18(2), 25-34.
  14. Marcos, D., Pino, F. J., Bordons, C., & Guerra, J. J. (2014). The development and validation of a thermal model for the cabin of a vehicle. Applied Thermal Engineering, 66(1), 646-656. https://doi.org/10.1016/j.applthermaleng.2014.02.054
  15. Min, B, C., Chung, S, C., Kim, S, G., Oh, J, Y., Kim, H, J., Kim, S, J., KIm, Y, N., Shin, J, S., Min, B, W., Kim, C, J., & Park, S, J. (1999). The assessment of odors using EEG and autonomic responses. Science of Emotion & Sensibility, 2(2), 1-10.
  16. Oi, H., Tabata, K., Naka, Y., Takeda, A., & Tochihara, Y. (2012). Effects of heated seats in vehicles on thermal comfort during the initial warm-up period. Applied Ergonomics, 43(2), 360-367. https://doi.org/10.1016/j.apergo.2011.05.013
  17. Pokorny, J., Fiser, J., & Jicha, M. (2014). Virtual testing stand for evaluation of car cabin indoor environment. Advances in Engineering Software, 76, 48-55. https://doi.org/10.1016/j.advengsoft.2014.06.002
  18. Sassa, N., Kubo, H., Isoda, N., & Yanase, T. (2000). Experimental study on individual variation of preferred air temperature in summer. Journal of Architecture Planning and Environmental Engineering, 65(531), 31-35. DOI: 10.3130/aija.65.31_3
  19. Shim, H. S., & Jeong, W. S. (2011). Preferred indoor temperature of college students in summer by body composition. The Korean Journal of Community Living Science, 22(1), 155-161. DOI: 10.7856/kjcls.2011.22.1.155
  20. Simion, M., Socaciu, L., & Unguresan, P. (2016). Factors which influence the thermal comfort inside of vehicles. Energy Procedia, 85, 472-480. DOI: 10.1016/j.egypro.2015.12.229
  21. Velt, K. B., & Daanen, H. A. M. (2017). Optimal bus temperature for thermal comfort during a cool day. Applied Ergonomics, 62, 72-76. https://doi.org/10.1016/j.apergo.2017.02.014
  22. Yang, W, Y. (2017). Effects of noise on indoor thermal sensation and comfort. Journal of Korea Institute of Ecological Architecture and Environment, 17(1), 83-89.