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Abstract

We present a new maximum likelihood approach to estimate demographic history using genomic data sam-
pled from two populations. A demographic model such as an isolation-with-migration (IM) model explains the
genetic divergence of two populations split away from their common ancestral population. The standard probabil-
ity model for an IM model contains a latent variable called genealogy that represents gene-specific evolutionary
paths and links the genetic data to the IM model. Under an IM model, a genealogy consists of two kinds of evo-
Iutionary paths of genetic data: vertical inheritance paths (coalescent events) through generations and horizontal
paths (migration events) between populations. The computational complexity of the IM model inference is one
of the major limitations to analyze genomic data. We propose a fast maximum likelihood approach to estimate
IM models from genomic data. The first step analyzes genomic data and maximizes the likelihood of a coales-
cent tree that contains vertical paths of genealogy. The second step analyzes the estimated coalescent trees and
finds the parameter values of an IM model, which maximizes the distribution of the coalescent trees after taking
account of possible migration events. We evaluate the performance of the new method by analyses of simulated
data and genomic data from two subspecies of common chimpanzees in Africa.

Keywords: demographic model, isolation-with-migration model, coalescent stochastic process,
divergence time, evolutionary genomics

1. Introduction

In population genetics and molecular evolution, an isolation-with-migration (IM) model is a demo-
graphic model used to estimate the divergence time between two populations descended from their
common ancestor population (Chung, 2019). For example, Figure 1(a) shows a 2-population IM
model with six demographic parameters: ¥ = (6y, 6,,60,,m|,my, Ts), where the definition of each
parameter is following (for the units of parameters, refer to Hey and Nielsen, 2004). The 2-population
IM model describes a conceptual evolutionary history of two extant populations of sizes 6, and 65,
respectively. Time T’s ago, the two populations branched off from their common ancestor population
of size 6,. The population sizes are assumed to be constant over time. After splitting, the two popu-
lations have independently evolved except for migrations between the two populations. It is assumed
that migrations happened in both directions, but with different constant rates m; and m, (Figure 1(a)).

IM models are typically estimated from an alignment or aligned DNA sequences sampled from
individuals of the extant populations of interest. An alignment is also called a locus because the
aligned sequences are sampled from the same chromosome location. DNA sequences are aligned
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Figure 1: (a) An example of an IM model. A 2-population IM model includes six demographic parameters:

three population sizes (6, 0, and 6,,), two migration rates (m, and m,), and a splitting time (T;). (b) An example

of a genealogy (G) given the IM model in (a). The genealogy depicts the evolutionary paths of four sequences

sampled from the two extant populations. The genealogy includes three coalescent events (vertical paths of

genes) and two migration events (horizontal paths). (c) The coalescent tree (1) of the genealogy G in (b). The
coalescent tree includes the coalescent events on G, but not the migration events.

so that they are descendants of a common ancestral sequence of the same length. Loci can have
different evolutionary histories because of biological processes such as recombinations. Therefore
it is common to assume that there is no recombination within loci and recombination unrestrictedly
occurred between loci. In other words, loci are assumed to be statistically independent.

A genealogy (G) is a graphical representation of the evolutionary paths of an alignment from their
common ancestral sequence (Figure 1(b)). A genealogy fundamentally includes vertical paths of how
DNA sequences have descended generation by generation. For example, the genealogy in Figure 1(b)
shows that lineages 3 and 4 branched off more recently than others. These branching patterns can
also be explained backward in time. Two lineages coalesced into a single ancestral lineage backward
in time, known as a coalescent event. Therefore, the genealogy in Figure 1(b) has three coalescent
events. If the IM model in Figure 1(a) is the true demographic model, a genealogy of an alignment
may include migration paths (horizontal paths) between the populations 1 and 2 on time period (0, Ts ).
With the coalescent events of the genealogy in Figure 1(b), we can reconstruct a simpler tree in Figure
1(c), including no migration events. In this paper, the tree in Figure 1(c) is called the coalescent tree
() of genealogy in Figure 1(b). Since loci may have different histories, G; and A; denote the genealogy
and coalescent trees, respectively, of the i locus of n loci, fori = 1,...,n. Genealogies are latent
variables because they cannot be observed. However, a genealogy plays an essential role in building
a statistical model as a bridge connecting the genetic data to the demographic parameters.

To build the likelihood function of ¥, the standard probability model takes account of the two
levels of uncertainty (Felsenstein, 1988): (1) the probability distribution of an alignment given a
genealogy using a mutation or substitution model (Kimura, 1969; Jukes and Cantor, 1969; Hasegawa
et al., 1985; Tavaré, 1986) and (2) the probability distribution of a genealogy given a demographic
model using a stochastic process such as coalescent processes (Kingman, 1982; Hudson 1983). Then
the probability of the i locus given an IM model with parameters W can be obtained by integrating
out all possible genealogies:

p(DilY) = f p(DilG)p(Gi|¥)dGi, (1.1)

where p(D;|G;) is the probability of alignment D; given genealogy G; and p(G;|'¥) is coalescent prob-
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ability of genealogy G; given a demographic model with parameters . The likelihood function of all
n loci is as follows:

Lieeo) = | | poiw) = | | f p(DIG)HP(GIP)AG;, (1.2)
i=1 i=1

where D = (Dy, ..., D,). The likelihood function is called Felsenstein’s equation (Felsenstein, 1988).
The maximum likelihood estimation (MLE) of WV is as follows:

¥ = arg max Ly (¥]D). (1.3)

The exact MLEs of demographic models are available for a limited case (Zhu and Yang, 2012). As
far as we know, there is no general closed-form of the likelihood function (1.2), and it is extremely
difficult to numerically compute likelihood values because of the vast space of a genealogy. Therefore,
many Bayesian inferences have been developed by considering a prior distribution p(¥) of ¥. The
posterior distribution of demographic parameters ¥, given genetic data, is

p(¥ID) o< L (YD) p(P).

Recently developed Bayesian methods mainly solved the mixing issues of an MCMC simulation,
which was a long-standing barrier to analyses of genomic data from multiple populations (Hey et al.,
2018; Chung and Hey, 2017). Nonetheless, applying those methods to genomic analyses or demog-
raphy inference for two or more populations is challenging because of the computational complexity
(Chung, 2019).

We propose a new maximum likelihood approach, which is faster than the existing Bayesian
methods while obtaining acceptable accuracy. The new method performs two steps. In step 1, the
MLE of a coalescent tree for each locus is obtained. In step 2, the estimated coalescent trees are
handled as data, and we use p(A|?¥) as a likelihood function to find the MLE of ¥. We evaluate the
performance of the method in terms of accuracy, using simulated DNA sequences. To demonstrate
the new method, we apply it to genomic data from two subspecies of common chimpanzees, Pan
troglodytes (P. t.) troglodytes and P. t. verus (Prado-Martinez et al., 2013).

2. A maximum likelihood approach

The new 2-step method is described for a 2-population IM model (Figure 1(a)) with six demographic
parameters, ¥ = (61, 6,,0,,m;,my, Ts). The Felsenstein’s equation in (1.3) opened the door to the
likelihood-based inference of population/species-level models from genetic data. The likelihood func-
tion incorporates two levels of uncertainties: (1) P(D;|G;), a substitution probability and (2) P(G;|'V),
a coalescent probability. However, it is difficult to evaluate the likelihood function, particularly the
integration over genealogies. One reason is that the space of a genealogy is larger than that of a
coalescent tree which grows double-exponentially with the number of sequences (Semple and Steel,
2003).

A genealogy is composed of the coalescent tree A and migration events M, thatis, G = (1, M), and
genetic data is conditionally independent of migration events given a coalescent tree (Chung and Hey,
2017). In virtue of the property of genealogies, the substitution probability is P(D;|G;) = P(D;|4;),
where A; is the coalescent tree of G;. Moreover, we can calculate the probability distribution of a
coalescent tree given an IM model:

pAY) = f p(G¥)dM = f P, MMY)dM, 2.1)
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of which the integration over possible migration events is calculated using a continuous-time Markov
chain representation of a genealogy (Zhu and Yang, 2012; Andersen et al., 2014; Hobolth et al.,
2011; Chung and Hey, 2017) Then the locus-likelihood in (1.1) can be obtained by integrating over
coalescent trees rather than genealogies:

Li(YIDy) = p(Dil¥) = f p(Dil ) p(Ai¥)dA;. 2.2)

The space of a coalescent tree is smaller than that of a genealogy, but remains vastly huge to compute
the integration over possible trees.

We propose a two-step inference (Figure 2). In step 1, the new method uses the substitution
probabilities to estimate the coalescent tree of each locus rather than integrating over coalescent trees:

A; = arg max p(D;| ). (2.3)
In step 2, the estimated trees, A4, ..., 4,, are handled as data to build a likelihood function for :
Ly (¥A..... 0,) = ]_[ p (A1) 2.4)

i=1

We then propose the one that maximize the likelihood as the MLE of ¥:

¥ = argmax L (P11 ). (2.5)

To execute the new method, we employ existing software each step. In step 1, estimated trees are
obtained by using PAUP* (Swofford, 2002), popular software that provides maximum likelihood trees
using diverse substitution models. In step 2, we use software MIST (Chung and Hey, 2017) which
is a Bayesian approach to infer demographic models. Software MIST implements two-step Bayesian
analyses using importance sampling. In step 1, for each locus, coalescent trees are sampled from a
Markov chain Monte Carlo (MCMC) simulation. In step 2, the sampled trees are used to build the
approximated posterior density function of ¥, and the maximum a posteriori estimate (MAPE) of ¥ is
obtained. If the importance function used in step 1 of MIST is the posterior density of a coalescent tree
corresponding to an improper flat prior, then the posterior density of ¥ is approximated as follows:

n k
p¥D) < p( [ | {Z p(4 ,-|LP)} : (2.6)

i=1 | j=1

where 4;; is the j™ sampled tree for locus i from the MCMC simulation (Chung and Hey, 2017).
If a single tree is sampled from an MCMC simulation (k = 1) and the prior distribution p(¥) for
independent parameters is constant over a wide range of P, then the approximated posterior density
is proportional to the likelihood function in (2.4):

p(¥D) o< Ly (P| 11,55 An1) - 2.7

If the input trees for step 2 of MIST are the estimated trees by PAUP*, then the MAPE of ¥ under this
circumstance (2.7) is the same as the MLE ¥ in equation (1.3). Therefore, to execute step 2 of the
new method, we use the step 2 of MIST as if a single tree is sampled for each locus.
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Figure 2: The new method schematic. In step 1 the MLEs of coalescent trees for the aligned DNA sequences are
obtained. In step 2, the set of estimated coalescent trees is used to infer a demographic model of interest. The
same set of trees from step 1 can be used repeatedly to estimate different demographic models.

The new maximum likelihood approach has several advantages. First of all, the new method
scales well with the number loci and is expected to be faster than Bayesian approaches. The actual
computing time of the optimization in step 2 depends on not only the number of trees to analyze
but also the initial values, the curvature of the target function and etc. However, we can compare
the computational complexity to calculate the target function for one iteration of an optimization
algorithm. The step 2 of MIST maximizes the posterior function (2.6), and the time complexity to
calculate the posterior function is O(nk), where n is the number of loci and k is the number of the
sampled trees for each locus. In other words, the computing time for each iteration is proportional to
the total number of coalescent trees to analyze (Chung and Hey, 2017). The new method maximizes
the likelihood function (2.4), where the computational complexity is O(n). Therefore, the step 2
of the new method is expected to be faster than MIST as more coalescent trees are sampled from an
MCMC simulation by MIST. Second, the estimated coalescent trees can be repeatedly used to estimate
diverse demographic models (Figure 2). In step 1, coalescent trees are inferred from substitution
models which are independent of a demographic model of interest. Once the trees are estimated,
different demographic models can be inferred without repeating step 1. The third advantage is that the
new method partially reduces a source of estimation variance by analytically integrating out possible
migrations. However, the estimation errors of coalescent trees are added to the estimation errors of
demographic parameters.

It is important to note that estimated genealogies are not appropriate to use. First, a genealogy with
migration events cannot be defined without the given splitting times of populations. Second, migration
events, particularly the times of migration events, are non-identifiable (Sousa et al., 2011), and hence
the credible intervals of migration times were very wide (Strasburg and Rieseberg, 2011). Therefore,
most MCMC-based methods have to simulate genealogies and splitting times of populations together
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Table 1: The mean squared errors of MLEs for each parameter

Coalescent trees No. loci 7 5 % Param:;t::r e TS
100 0.4145 0.0146 0.0615 1.94x107% 1.75%1073 6.79 x 1074
True trees 1,000 0.0452 0.0011 0.0081 1.79x1075 1.15x1074 7.11x107¢
10,000 0.0048 0.0001 0.0006 1.34x1076 1.12x1073 1.14x1077
100 0.5542 0.0166 19485.3 0.00038 0.00696 40.4721
ML trees 1,000 0.0675 0.0016 0.1606 0.00023 0.00066 0.0180
10,000 0.0480 0.0003 0.1856 0.00017 0.00071 0.0171

The MLE:s of the six parameters were obtained by analyzing (1) the true simulated coalescent trees and (2) the coalescent
trees estimated from the simulated DNA alignments. MLE = maximum likelihood estimation.

(Hey and Nielsen, 2007; Hey et al., 2018), which can lead to severe mixing problems (Chung, 2019).

3. Simulation

We evaluated the performance of the new maximum likelihood approach using simulations. First, we
used a popular software in population genetics, called ms (Hudson, 2002). The software ms simulated
coalescent trees from 2-populations IM model (Figure 1(a)) with 8, = 5,6, = 1, 65 = 3, m; = 0.02,
my = 0.1 and Ts = 2. The parameter values are the same as the simulation setting that Chung and
Hey (2017) used to evaluate the performance of MIST. The number of loci varied as 100, 1,000, and
10,000, which is the same as the number of coalescent trees. Then we applied seg-gen (Rambaut and
Grassly, 1997) to simulate DNA alignment of 1000 sites, given each of the simulated coalescent trees.
We assumed a Jukes-Cantor substitution model (Jukes and Cantor, 1969) to simulate DNA sequences.
For each case, 50 replicates were generated.

We first analyzed the simulated coalescent trees to evaluate the performance of the step 2 of the
new method separately. Therefore, MIST was directly applied to the true simulated coalescent trees.
Table 1 shows that the mean squared error (MSE) for each parameter is substantially reduced as more
loci are analyzed. Both the bias and standard error of each demographic parameter decrease with the
number of loci (data not shown).

The new approach analyzed the simulated DNA alignments. In step 1 of the analysis, PAUP*
(Swofford, 2002) was applied to obtain the MLE of the coalescent trees for each locus. In step 2,
MIST was applied to the estimated coalescent trees. Figure 3 shows the average of the MLEs for each
parameter with standard errors. The standard error for each parameter was estimated by the standard
deviation of the MLEs from 50 replicates. Figure 3 shows population sizes 6, and 6, from which
DNA sequences were sampled tended to be underestimated, but the biases were small as —0.202 and
—0.009, respectively, on 10,000-locus data. The ancestral population size 6, was overestimated, and
the bias was 0.428 on 10,000-locus data. The estimates for m; and m, were biased as 0.01243 and
0.0254, respectively on 10,000-locus data. The splitting time T also tended to be underestimated
with 1,000 or more loci (bias on 10,000-locus data: —0.126). Overall, the standard errors of all esti-
mations were strictly decreasing with the number of loci. On the same set of demographic parameter
values, the MAPEs by MIST were better than those by the new method (Figure 3 of Chung and Hey,
2017). The absolute bias and the standard errors of the MAPEs ranges 0.009-0.016 and 0.0028—
0.0699, respectively, on 10,000-locus data (Chung and Hey, 2017). It is because the new method does
not incorporate the uncertainty of coalescent tree estimations in Step 1, while MIST uses MCMC sam-
ples of coalescent trees. However, we note that the new method is faster than Bayesian approaches
including MIST.

Some estimators have small biases; however, the overall accuracy in terms of MSEs for most
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Figure 3: The performance of the new method for a 2-population IM model. The average of the MLEs are plotted

for each parameter whose true value is in gray horizontal line: (a) 6, = 5, (b) 6, = 1, (¢) 8, = 3, (d) m; = 0.02,
(e)my = 0.1, and (f) Ts = 2. For each plot, vertical lines indicate standard errors, and the x axis for numbers of
loci is on a log scale.

0.

parameters was better with the number of loci (Table 1). We note that the MSEs from the true tree
analyses were induced by the step 2 of the method, and no errors were introduced from the step 1.
Compared to the MSEs from the analysis of true trees, the MSEs from the analysis of DNA sequences
were the errors accumulated through the two-step analysis of the new method. Therefore, the differ-
ence between two kinds of MSEs for each parameter is considered as the errors caused by using the
point estimation of coalescent trees as input for step 2 and ignoring the estimation errors of the trees.
Ignoring the uncertainty of tree estimation affects the estimations of 63 and T relatively more than
other parameters. On 100-locus data, the MSEs for 65 and Ts from the analysis of DNA sequences
were around 10° and 10* times larger than those from the true tree analysis, respectively. One possible
reason is that the six parameters were jointly estimated and the estimate of 85 is correlated with the
estimate of Ts. Given a splitting time T, the information on coalescent trees such as the number
of the coalescent events and coalescent times older than 7T's is sufficient statistics for 6;3. Therefore,
when a biased value of T is chosen, a biased estimate of 83 can be obtained as well. Migration rates,
my and my are also highly correlated with Ts, but their MSEs were not as large as those for 65 and
Ts. It is possibly because the new method does not estimate individual migration paths, but uses the
probability taking into account possible migration paths to estimate migration rates.
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Table 2: Estimation of demographic parameters for two common chimpanzee subspecies

MLE 90% CI 95% CI

Population size of P, t. troglodytes (Ptt) 1,056.73 (755.13, 29,174.2) (689.27, 30,264.6)
Population size of P. t. verus (Ptv) 269.11 (188.31, 350.47) (187.11, 354.41)
Population size of common ancestor 25,296.25 (23,824.66, 63,146.33) (19,139.05, 64,895.3)
Splitting time (years) 8,103.96 (6,589.36, 3,152,886) (6,438.59, 3,204,850)
Migration rate per generation

from Ptt to Ptv 5.26e-4 (1.29e—4, 7.36e—-4) (1.27e-4,7.71e—4)

from Ptv to Pt 9.75¢e-4 (6.44e—4, 0.002) (6.19e—4, 0.002)

The new method was applied to the genomic data of two chimpanzee subspecies, and the MLEs of the six demographic
parameters were provided with 90% and 95% percentile confidence intervals (CIs) from bootstrappings. Estimates are
shown on a demographic scale, using a per-site mutation rate per generation of 2e—8 and assuming 20 years per generation.
Migration rates are backward in time.

4. Real data analysis

The new maximum likelihood approach was applied to the genomic data that Chung and Hey (2017)
previously analyzed. The genomic data contains 1,000 loci of three sequences from each of two com-
mon chimpanzee subspecies, Pan troglodytes troglodytes (Ptt) from Central Africa and Pan troglodytes
verus (Ptv) from West Africa. In step 1 of the new method, PAUP* was applied to each alignment to
estimate the coalescent tree. Estimated trees with branches of length zero or with polytomies were
disregarded, and 590 remaining trees were analyzed in the next step. In step 2, MIST was applied to
590 coalescent trees to infer 2-population IM models. To estimate confidence intervals (ClIs) for each
parameter, we performed a bootstrap method by resampling coalescent trees. The step 2 of the new
method was applied to each of 100 bootstrapped data sets. Using the estimated parameter values from
bootstrapped data, we calculated 90% and 95% percentile confidence intervals for each parameter.

The MLEs of demographic parameters by the new method were 8, = 8.45¢—5 (Ptf), 6, = 2.15¢—5
(Pt), 6, = 0.002, Ts = 8.1e — 6, iy = 26289.9, and /i, = 48748.1. Table 2 shows the estimated
parameter values on an easy to interpret demographic scale. Converted parameters were effective
population sizes, migration rates per generation, and the splitting times in years (see Hey and Nielsen,
2004; Chung and Hey, 2017 for the parameter conversion). To convert, we assumed a per-site mutation
rate per generation of 2 x 107® and assuming 20 years per generation (Chung and Hey, 2017). The
90% and 95% percentile CIs were wide except for the population size of Ptv (Table 2).

We compared our estimates to the previous studies of Bayesian analyses whose estimated values
were similar (Won and Hey, 2005; Hey, 2010; Chung and Hey, 2017). Our estimates of sampled pop-
ulation sizes (Ptt and Ptv) and splitting time were smaller than those of the previous three studies. For
example, the estimates by MIST were 27,081.38, 6,342.3, and 347,732, respectively (Chung and Hey,
2017). However, the bootstrap CIs except for Ptv contained the estimates by Bayesian analyses. The
estimates of the common ancestral population size and two migration rates were later than previous
Bayesian analysis, and their CIs did not include previous estimates. Overall, the pattern of bias by our
new method was similar to the simulations.

The new estimates were different; however, their relative values were broadly consistent with
the previous results by Chung and Hey (2017). First, the population size of Ptt is estimated to be
four times larger than that of Prv. Moreover, in population genetics, evolutionary independence can
be assessed by the population migration rate (2NM), where N is the effective population size, M
is the migration rate per sequence per generation, and both N and M are on a demographic scale
(Wright, 1931). If 2NM < 1, then the migration rate from another population is low relative to
the rate of random genetic drift (neutral evolution). When 2NM > 1, however, the migration rate
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is relatively high, and in population genetics, the divergence of the receiving population are more
likely affected by the source population (Felsenstein, 1976). Our estimate of 2N; M is 1.111 which is
larger than the estimate, 0.525, of 2N, M,. In the previous study by MIST, the estimate of 2N; M| was
also larger than that of 2N, M,, although both were smaller than our estimates (2N M; = 0.878 and
2N, M, = 3.113e—13) with one of them close to zero (Chung and Hey, 2017).

5. Conclusions

We presented a new maximum likelihood approach to estimate an IM model from genomic data. The
new method is a 2-step analysis. In step 1, the MLEs of coalescent trees are obtained using substitution
models. In step 2, the estimated trees were analyzed to find the MLEs of demographic parameters.
The likelihood function for demographic parameters is the probability of coalescent trees after exactly
accounting for all possible migration events. Removing migrations from inference enables us to
estimate latent variables, coalescent trees. Compared to MCMC based methods that sample latent
variables of genealogies or coalescent trees, the new method is computationally fast and scales with
the number of loci.

From simulations and real data analysis, we evaluated the performance of the new method. The
sampled population sizes and the splitting time tended to be underestimated, while migration rates
and the ancestral population size were overestimated. However, the biases were small from the simu-
lations, and the percentile CIs for most parameters included the previous results of Bayesian analyses.
The relative relations of estimations were also consistent with previous results. As future work, it
is important to study the asymptotic properties of the estimations ¥ in equation (2.5). Additionally,
comparing ¥ with ¥ in equation (1.3) would be interesting.

It is straightforward to extend the new approach to diverse demographic models for three or more
populations. When three or more populations are considered, the population-level phylogenetic tree is
also a parameter of interest. The computational complexity of the current MCMC based methods is a
major roadblock to genomic analysis and to the inference of demographic models and the phylogeny
of multiple populations (Chung, 2019). In particular, it is very challenging to estimate a demographic
model along with the phylogenetic tree of multiple populations from genomic data (Hey ez al., 2018;
Chung 2019). It is worth evaluating if the new method estimates a correct order of splitting times of
three or more populations, although the estimations of splitting times could be biased. The topology
of the population-level phylogenetic tree is easily reconstructed ilf we know the order of splitting
times of multiple populations, then the topology of the population-level phylogenetic tree is easily
reconstructed. Therefore, we expect that our method opens the door to a fast estimation of diverse IM
models and the phylogenetic tree from genomes.
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