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Abstract
Insurers face increasing demands for cyber liability; entailed in part by a variety of new forms of risk of

data breaches. As data breach occurrences develop, our understanding of the volatility in data breach counts has
also become important as well as its expected occurrences. Volatility clustering, the tendency of large changes
in a random variable to cluster together in time, are frequently observed in many financial asset prices, asset
returns, and it is questioned whether the volatility of data breach occurrences are also clustered in time. We now
present volatility analysis based on INGARCH models, i.e., integer-valued generalized autoregressive conditional
heteroskedasticity time series model for frequency counts due to data breaches. Using the INGARCH(1, 1) model
with data breach samples, we show evidence of temporal volatility clustering for data breaches. In addition, we
present that the firms’ volatilities are correlated between some they belong to and that such a clustering effect
remains even after excluding the effect of financial covariates such as the VIX and the stock return of S&P500
that have their own volatility clustering.
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1. Introduction

Personal and company information continue to grow as cyber activities expand. However, there has
also been an increase in the uncontrolled and unjustified transfer of information though data breach ac-
cidents. With increasing reliance of the operations of firms on the economies occurring in cyberspace,
it is widely regarded that the risk of data breach as well as other types of cyber risks would have also
recently expanded in number and size (Pooser et al., 2018). An increased access to private data dur-
ing economic activities, or the absence of physical blockades can potentially elevate the occurrence
frequency of data breach.

Data breach insurance (cyber risk insurability has been analyzed by Biener and Eling (2012),
which is based on insurability criteria, Berliner (1982)), a type of cyber insurance, is an insurance that
compensates for losses and expenses occurred during an information leakage accident. Data breach
insurance is designed to protect insureds against direct losses from information leakage as well as
indirect losses and liability for secondary damage and even losses from damage to a firm’s reputation.
The two fundamentals of actuarial analyses for insurance are ratemaking and estimating risk capital.
While there have been several researches on ratemaking data breach risk (Eling and Loperfido, 2017),
estimating solvency capital, which requires understanding the volatility of data breach risk, has yet to
be fully addressed to the best of our knowledge.
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We first need to find if the volatility of data breach risk is clustered in time or not to decide if
the static level of solvency capital for insuring data breach risk is adequate. Volatility clustering was
empirically found by Mandelbrot (1963) and he noted that “. . . large changes tend to be followed
by large changes, of either sign, and small changes tend to be followed by small changes, . . .” This
empirical finding of volatility clustering in financial data have been mainly modeled by stochastic
volatility models or ARCH-type models. Among others, ARCH models (Engle, 1982) and its gen-
eralized model - GARCH models (Bollerslev, 1986; Lee and Hwang, 2018) are commonly adopted
in modeling financial time series data in econometrics. INGARCH model which was proposed by
(Ferland et al., 2006) describes an integer-valued time series by the GARCH with count distribu-
tions (a Poisson or negative binomial distribution) as residual distributions. Our study finds volatility
clustering in data breach count time series in the INGARCH model framework.

Correlations might also exist between cyber risks (Bohme and Kataria, 2006). Accordingly, the
correlations between cyber risks might generate a bias in estimating volatility clustering effects; there-
fore, caution needs to be taken in analyzing volatility clustering due to the possibility of correlation
structure presence. If we classify cyber risks into non-epidemic risks and epidemic risks, where the
latter includes damages from viruses, worms, or spywares, these epidemic risks might have a corre-
lation structure. Eling and Wirfs (2016) argued that correlation is main characteristics of cyber risk
and a research by Öĝüt et al. (2011) investigated the nature of correlations in information security
breach risk. Bohme and Kataria (2006) studied cyber risk, especially focused on information security
risk with high-level correlations and argued that cyber insurance might not be best suited to managing
information security risk if it has a high global correlation. In that case, since a high global correla-
tion impedes risk-pooling in local risk groups, insurers are required to add a high safety loading to an
insurance premium. Yang and Lui (2014) studied a specific epidemic model with a Bayesian network
for cyber risk. In this study, our second goal is to test if there exist interclass correlations (we use
the terms ‘class’ and ‘group’ interchangeably) between data breaches in different industry sectors, by
including other groups’ time series of data breach counts in the INGARCH model.

A more serious aspect to consider further in the INGARCH model is a model endogeneity, as ex-
emplified by the evidence in the financial sector that volatility of large stocks can be both endogenous
or exogenous (Sornette et al., 2004). Achcar et al. (2018) used a Lévy distribution in the presence of
left censored data and covariates. Third goal of our study is to test a selection of external covariates
and their lagged time series for possible drivers of clustering volatility of data breach occurrences.
Studies on other related cyber risks include Bojanc and Jerman-Blaẑiĉ (2008) who developed an eco-
nomic model for the risk.

This article is organized as follows. In Section 2, we construct an INGARCH model with co-
variates for data breach losses. Section 3 describes the sample of historical data breach occurrences
and related considerations for our analysis. Section 4 analyzes the volatility clustering effect with and
without external covariates and it tests the coincident interclass correlation between industry sectors.
Section 5 summarizes our study.

2. INGARCH(p, q)(p, q)(p, q) model for data breach counts

Volatility clustering is accompanied by temporal autocorrelations. To analyze the effect in this section,
we consider an INGARCH(p, q) model with covariates, i.e., an integer-valued generalized autore-
gressive conditional heteroskedasticity time series model for frequency counts due to data breaches
occurred in a class (an industry sector). In this model, we include two types of covariates of another
class’s (industry sector’s) coinciding (no time lag) data breach count and a time-lagged exogeneous
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financial and economic index.
There are two types of correlations, i.e., interclass correlation at a group level and intraclass corre-

lation at an individual level. We can assess the interclass correlation by including the other class’s time
series of data breach counts as a covariate in the model. The insurers’ decision in setting a premium is
also influenced if an interclass correlation exists at the class (group) level (Bohme and Kataria, 2006).
Then, a simple pricing method using a ratio of losses to exposures would fail for correlated risks,
since it assumes that insured risks are independent. Exogeneous covariates are also considered since
they might enter the effect of volatility clustering (Samiev, 2013).

We construct an INGARCH(p, q) time series model with non-negative covariates (Heine, 2003;
Ferland et al., 2006), as follows. A data breach loss for the current period might depend on past
observations and past means. Such a situation might occur, for example, when an individual hacker or
hacker team locally seeks a specific type of identity information that can be found predominantly in
a specific industry sector (Sen and Borle, 2015), e.g., the banking industry, and then they may make
several continuing attempts of attack over a series of periods (Tarig et al., 2006). It is then expected
(with a high level of probability) that the data breach loss occurs in that industry more frequently
over the extended time period in a clustered fashion. In this case, the volatility of data breach is
clustered, but correlation is absent. As previously explained, the autocorrelation of a frequency time
series should not be neglected in pricing insurance coverage.

Suppose we denote the time period such as one month as t, a count time series by N(i)
t for the ith

class (industry sector), and we represent the expected value of the frequency time series E[N(i)
t |F

(i)
t−1]

conditional on F(i)
t by a process λ(i)

t such that E[N(i)
t |F

(i)
t−1] = λ(i)

t , where F(i)
t is a filtration of the joint

process, {N(i)
t , λ

(i)
t }. We then model the conditional mean, λ(i)

t with a link function, g(λ(i)
t ), by the

following linear predictors with 5 concurrent observations in other sectors (l):
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where g is a link function, g̃ is a transformation function of the frequency. Here, the N(i)
t−m j

, λ(i)
t−nk

,N(l)
t

inside the sums, and X(i)
t−r are the jth lagged observation, the kth lagged conditional mean, the frequency

observation in the lth sector, and the covariate at lag r for the ith group, respectively. Furthermore, β(i)
0

is a constant, and β(i)
j , α

(i)
k , γ

(i)
l , and η(i) are linear coefficients. The first and second terms are concerned

with the autocorrelation of the time series, the third terms are interclass linear correlation terms, and
the fourth terms are covariate terms as explained below.

We will later show that the best-fit unconditional count distribution is the negative binomial distri-
bution. Accordingly, we set the model by using the log link, g(x) = log x, which is the canonical link
function for Poisson and negative binomial distribution along with an identity transformation function,
g̃(x) = x. Specifying a suitable set, P = {m1,m2, . . . ,mp} and Q = {n1, n2, . . . , nq} is arbitrary, and its
entire parameter space is vast. Therefore, we investigate the model by limiting analysis to the case
when P = {m j|m = j}, Q = {nk |n = k}. The third term means interclass linear correlations: i.e., γ(i)

l N(l)
t

(l = 1, . . . , 5, and l , i) is a term concerning with the coinciding interclass correlation between the
ith and lth group’s data breach frequencies. The fourth term represents lagged exogeneous covariates
that possibly absorb volatility clustering or predict the frequency of data breach loss. In this study,
we allow only one lagged exogeneous financial or economic covariate (X(i)

t−r) for each class, which is
chosen differently for different groups among possible candidates.

We further assume that the conditional distribution N(i)
t |F

(i)
t−1 for residuals follows a Poisson or



490 Hyunoo Shim, Changki Kim, Yang Ho Choi

negative binomial distribution. Then, given the above assumptions, the previous model reduces to the
following equation:

log
(
λ(i)

t

)
= β(i)

0 +

p∑
j=1

β(i)
j N(i)

t− j +

q∑
k=1

α(i)
k λ

(i)
t−k +

5∑
l=1,l,i

γ(i)
l N(l)

t + η
(i)X(i)

t−r. (2.2)

When p , 0 or q , 0, then there exists heteroskedasticity, i.e., volatility clustering. If we assume the
Poisson distribution for residuals, i.e., N(i)

t |Ft−1 ∼ Poisson(λ(i)
t ), then

P
(
N(i)

t = n|Ft−1

)
=

(λ(i)
t )ne−λ

(i)
t

n!
, n = 0, 1, . . . ,

and the conditional variance is Var(N(i)
t |Ft−1) = E(N(i)

t |Ft−1) = λ(i)
t . A non-Gaussian state space ap-

proach is an alternative to this time-series model. A state-space model which was originally developed
in control engineering (Kalman, 1960) represents probabilistic dependence between state process and
observation process in a dynamical system. Kitagawa (1981) showed that the time series with drifting
mean value can be represented as a state-space model; in addition Timmer and Weigend (1997) also
revealed that dynamic volatility of time series can be described by a state-space model instead of a
GARCH model. In perspective of the non-Gaussian state-space approach to nonstationary time series
(Kitagawa, 1987; Durbin and Koopman, 2000); therefore, our model can be interpreted as the one,
where the observed data breach counts in overall industries with dynamic latent state variables to drive
the dynamics of the system that are functionally mapped from such state variables with non-Gaussian
observation errors.

In the conditional Poisson response model, the conditional variance is equal to the conditional
mean value, by the nature of Poisson processes. For the negative binomial distribution for residuals,
i.e., N(i)

t |Ft−1 ∼ NegBin(λ(i)
t , ϕ

(i)), where the distribution is parameterized by the mean λ(i)
t , and the

dispersion parameter, ϕ(i), and then
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and the conditional variance is Var(N(i)
t |Ft−1) = λ(i)

t + (λ(i)
t )2/ϕ(i). Even if the dispersion parameter ϕ(i)

is kept constant, the variance is conditional on the mean, λ(i)
t . In this parameterization, (σ(i))2 = 1/ϕ(i)

is the overdispersion parameter.
In this paper, we choose the Bayesian information criterion (BIC) as the selection criteria defined

as:

BIC = p log(n) − 2 log(L),

where L is the likelihood, n is the number of samples, and p is the number of parameters.

3. Data

An act of data breach is an intentional or unintentional release of disclosed information to an unau-
thorized entity or environment. A common problem in tackling a new risk is to properly define its
term and scope. The U.S. courts have tried to conceptualize data breaches (Solove and Citron, 2017).
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According to the United States Department of Health and Human Services, Administration for Chil-
dren and Families, a data breach is defined as “a security incident in which sensitive, protected or
confidential data is copied, transmitted, viewed, stolen or used by an individual unauthorized to do
so.” (Information Memorandum, 2015). It is also called ‘cyber liability insurance’, which emphasizes
a duty of an insured to protect secured information for its customers. In order to avoid confusion with
the meaning of private information, the word, ‘data’ if used solely in our context, refers to a sample
of data breach loss records.

The process of pricing cyber risk insurance for insurers has been hindered partially due to insuffi-
cient and unreliable data until recently (Biener et al., 2015; Maillart and Sornette, 2010). To insurers,
this environment has worsened due to the dynamic nature of cyberspace. Eling and Schnell (2016)
noted that the most useful data set would be the actual data breach claims of insurers in the Cyber
Claims Study (2018). Our study is based on the samples of the de-trended data breach records from
Jan. 1, 2006 to Dec. 31, 2015, published by the Identity Theft Resource Center (ITRC) on its website
(www.idtheftcenter.org). In a form slightly different from the above, the ITRC defines a data breach as
“an incident in which an individual’s name plus a social security number, driver’s license number, and
medical record or financial record (credit/debit cards included) is potentially put at risk of exposure.”
The ITRC only traces data losses with regard to four types of information: social security number,
credit/debit card number, email/password/username, and protected health information (PHI). Maillart
and Sornette (2010) and Wheatley et al. (2016) found out that the personal data breaches increased
from 2001 to 2006, but afterwards, the frequency has been stable since 2006 or 2007.

The exposure under the data breach risk is the total US firms. The ITRC collects publicizes reports
daily data losses from the exposure and classifies them by five industry sectors: banking/credit/financial
(BCF), business (BUS), educational (EDU), governmental/military (GOV), and medical/healthcare
(MED). As the daily counts of data breach accidents are low typically ranging from zero to five, we
aggregate the data on the monthly basis to avoid large fluctuations of counts between periods.

With the above definition of exposures, it is implicitly assumed that during the data collection
periods from 2006 to 2015, there has been no variation in the number of firms in each industry sector
in the United States. The ITRC reports do not provide the explicit or estimated number of individuals
or firms at risk classified by the sectors; therefore, it keeps one from attaining the exact number of
exposures and applying exposure adjustment to a count time series.

4. Empirical results

4.1. Descriptive statistics and frequency distributions

In this section, we pool the longitudinal data breach count time series, and fit the unconditional pooled
data to two probability distribution models for frequency count data: Poisson and negative binomial
distributions. A probability density function of a negative binomial distribution for a count, k, is
parametrized by a size r, which is the number of failures before the kth success and a probability of
success, p:

f (k; r, p) = k+r−1Ck pk(1 − p)r.

Frequency is defined to be the number of losses per month observed in each industry sector. We
estimate parameters by the maximum likelihood estimation and perform chi-square goodness-of-fit
tests for residuals. Table 1 shows the descriptive statistics, frequency distributions, p-value of the test
and BIC. Table 1 indicates that Poisson distributions are adequate for most sectors except the BCF,
MED sector and all sectors combined, where negative binomial distributions seem to be appropriate.
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Table 1: Descriptive statistics and frequency distributions

Sector BCF BUS EDU GOV MED ALL
Mean 3.358 22.158 8.625 7.450 24.717 58.642

Standard Deviation 2.307 5.109 2.596 2.813 7.014 12.114
Variance 5.324 26.101 6.741 7.913 49.196 146.753

Index of Dispersion 1.585 1.178 0.782 1.062 1.990 2.503
(Variance-to-Mean Ratio)

Model 1: Poisson p-value 0.003 0.202 0.054 0.716 0.038 < 0.001
(P) BIC 532.622 727.137 574.283 585.801 817.903 999.074

Model 2: Negative Binomial p-value 0.623 0.073 0.028 0.544 0.087 0.077
(NB) BIC 524.241 730.622 579.071 590.436 794.835 939.605

BCF = banking/credit/financial; BUS = business; EDU = educational; GOV = governmental/military; MED = medi-
cal/healthcare; BIC = Bayesian information criterion.

Figure 1: The ACF and PACF of the count time series of data breach.

Additional evidence is that the ratio of variance to mean, which should be equal to one for a Poisson
distribution, is close to one for the BUS, EDU, and GOV.

The Poisson distributions or the negative binomial distributions rather than the zero-modified dis-
tributions are adequate to fit the frequency distributions, since the probability of zero claims is not
distorted during the process of data collection, and its magnitude is negligible. The fact that the
negative binomial distribution is the best for some sectors indicates overdispersion in loss frequency
distributions for that sector. In general, overdispersion in a generalized linear model arises when there
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Table 2: The fitted INGARCH(p, q) model without covariates: goodness-of-fit, lag of autocorrelation,
parameter estimates and test statistics

Sector (i)
BCF (1) BUS (2) EDU (3) GOV (4) MED (5) ALL

Order by 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd
Goodness lowest BIC

of fit Cond. dist. P NB P P P P P P NB NB NB NB
BIC 510.79 512.169 715.579 719.44 574.115 577.277 586.485 587.929 789.888 795.251 912.081 912.706

Lag of p 1 1 1 2 1 1 1 1 2 1 1 2
Autocorrelation q 1 1 1 1 1 0 0 1 0 1 1 1

Parameter

β0 0.03 0.03 0.201 0.249 0.131 1.829 1.595 0.149 1.969 0.29 0.271 0.508

(SE)

(0.036) (0.043) (0.190) (0.244) (0.140) (0.248) (0.209) (0.169) (0.425) (0.319) (0.223) (0.352)
β1 0.175 0.175 0.177 0.116 0.156 0.146 0.198 0.117 0.014 0.138 0.229 0.113

(0.069) (0.084) (0.076) (0.104) (0.082) (0.110) (0.098) (0.066) (0.098) (0.076) (0.078) (0.101)
β2 0.095 0.370 0.265

(0.137) (0.097) (0.133)
α1 0.783 0.783 0.757 0.708 0.778 0.805 0.771 0.704 0.497

(0.090) (0.109) (0.118) (0.164) (0.128) (0.130) (0.148) (0.111) (0.176)
σ2 0.135 0.027 0.035 0.017 0.015

Test

Persistence 0.958 0.958 0.934 0.917 0.934 0.146 0.198 0.922 0.384 0.909 0.933 0.874

statistics

Lagrange multiplier 0.637 0.637 0.857 0.831 0.823 0.95 0.331 0.232 0.377 0.122 0.664 0.91
test (lag-1)

Lagrange multiplier 0.548 0.548 0.943 0.899 0.7 0.547 0.615 0.631 0.97 0.553 0.991 0.994
test (lag-5)

Lagrange multiplier 0.878 0.878 0.999 0.996 0.027 0.246 0.364 0.355 0.88 0.802 0.947 0.859
test (lag-9)

Lagrange multiplier 0.567 0.567 0.844 0.803 0.377 0.004 0.061 0.078 0.185 0.065 0.337 0.816
test (lag-24)

ADF test 0.018 0.018 0.014 <0.01 0.032 0.275 <0.01 <0.01 0.048 0.017 0.018 <0.01

BCF = banking/credit/financial; BUS = business; EDU = educational; GOV = governmental/military; MED = medical/healthcare; BIC =
Bayesian information criterion.

are outliers, or imprecise relationships between conditional means and regressors, or omitted explana-
tory variables. Maillart and Sornette (2010) and Wheatley et al. (2016) also argue that the frequency
of cyber risk and data breaches forms a heavy-tailed distribution. However, missing information about
more explanatory variables, which the ITRC did not collect, might form substructures in a predefined
risk group, which is an industry sector and induce inhomogeneity in the group (Sen and Borle, 2015).

To investigate the existence of autocorrelation for the count time series, we plot the autocorrelation
function and the partial autocorrelation function of all data breach counts in Figure 1. There exists
autocorrelation of the time series at short lags.

4.2. INGARCH(p, q) Model without Covariates: Evidence of Volatility Clustering

In this section, we show the fitted INGARCH(p, q) models for data breach count time series with-
out covariates. First, we investigated various INGARCH(p, q) models for all possible cases of the
Poisson residual distribution and the negative binomial residual distribution with p = 1, . . . , 10 and
q = 1, . . . , 10 lags, and we obtained the best-fit model by maximizing the MLE among the given
parameter set space. In Table 2, we present the parameter estimates and BICs for the best and the
second-to-best models for each class. Goodness-of-fit in Table 2 shows that for the most classes, the
best model is the INGARCH(1, 1) time series with a Poisson conditional distribution. The superscript
‘(i)’ from all the parameters, such as β(i)

j , α
(i)
k , and γ(i)

l are dropped for simplicity. In addition, σ2 is an
estimated overdispersion coefficient in a negative binomial model only and persistence is defined as∑p

j=1 β
(i)
j +
∑q

k=1 α
(i)
k in the table.

In Table 2, β j( j , 0) and αk have nonzero values. The mean, λt, is conditional on the lagged
observations (N(i)

t− j) and the lagged means (λ(i)
t−k) and the variance is also conditional on past informa-
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tion; therefore, the data breach counts are heteroscedastic. Furthermore, a volatility clustering effect
persists strongly because the persistence of autocorrelation is close to one in most of models.

The model with one lagged observation (p = 1) and one lagged mean (q = 1) has a strong
persistence and this model is adequate to use the information in the previous period in predicting the
volatility of data breach counts. The small-lag autocorrelation implies that the expected frequency
rates have short-range dependence and that the data breach attack has a period of high activity coming
after a period of low activity. Comparison between β j and αk show that the effect of lagged means,
αk (0.70–0.81), is greater than that of lagged observations, β j (0.01–0.37), i.e., the autoregressive
component is larger than the moving average one. The weak dependence on the past observation is
also valid for the two lagged models, for example, the INGARCH(2, 1) model of the BUS sector.
This dependency on past information may be concerned with the epidemic nature of cyber risk or the
behavioral property of data breach hackers. Table 2 also contains the p-values of various tests for
validity of the INGARCH(p, q) model. The Lagrange multiplier test for the following null hypothesis
that the squared residuals in the current period are independent of the past squared residuals at lag-m,

ϵ2
t = β0 + β1ϵ

2
t−1 + β2ϵ

2
t−2 + · · · + βmϵ

2
t−m,

is not rejected at the significance level of 0.05. It shows that the residual variances are not het-
eroskedastic. The Ljung-Box test for the null hypothesis that the autocorrelation between the stan-
dardized residuals for a set of lags up to 24 is zero is not rejected at the significance level of 0.05. It
represents that no autocorrelation remains in the residuals of the INGARCH(1, 1) model. The aug-
mented Dickey-Fuller test for the null hypothesis that a unit root is present in time series is rejected
at the same significance level, and thus the time series can be regarded as stationary. In Figure 2, we
also show the ACF and the PACF plot of the residuals, where no noticeable pattern of autocorrelation
is observed.

4.3. INGARCH model with covariates: clustering of volatilities remained even after the
inclusion of covariates

Individual exposures or group exposures under data breach risk may not be independent with each
other. In that case, the data breach losses of a certain industry sector might be affected by other
industry’s data breach losses, or vice versa. Table 3 shows the correlation of each industry sector’s
data breach counts and its p-value. At the significance level of 0.01, meaningful correlations are found
between the following sectors: BCF-BUS, BCF-EDU, BUS-EDU, and GOV-MED. From Table 3,
the most significant is the correlation between BCF-BUS, 0.558, implying that the data breach risk
in finance sector is closely related with the general business sector in terms of frequencies. In the
previous section, we analyzed the data breach risk by the INGARCH model without covariates. We
now include covariates in the INGARCH model and as the first kind of covariates; in addition, we
consider coincident time series of other industries’ counts, γ(i)

l N(l)
t (l = 1, . . . , 5, and l , i), for the ith

class in relation with the lth class. We considered the candidate models with all possible combinations
of correlation terms (a single-covariate model and a double-covariate model), and Table 3 shows the
results of the best-fit models.

We found that the best-fit models are single-covariate models and they have γ(i)
l , 0 (l , i) for

only one external class (one industry sector). A possible explanation of correlation is that a target of
threat is not limited to a preferred class’s firms but instead ranges over several industries. Another
cause might be the instantaneous secondary data breach using the stolen secured information from
the primary data breach activity. The covariate of data breach counts for each sector are: BUS count
for BCF sector, BCF count for BUS sector, BUS count for EDU sector, and MED count for GOV
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Figure 2: The ACF and PACF of the residuals.

Table 3: Correlation of each sector’s data breach counts: the correlation and the p-value in parenthesis

Correlation BCF BUS EDU GOV MED(p-value)

BCF 1 0.558 0.286 0.081 −0.025
( <0.001) (0.002) (0.379) (0.784)

BUS 1 0.291 0.18 0.161
(0.001) (0.049) (0.078)

EDU 1 0.111 −0.02
(0.229) (0.827)

GOV 1 0.331
(< 0.001)

MED 1

BCF = banking/credit/financial; BUS = business; EDU = educational; GOV = governmental/military; MED = medi-
cal/healthcare.

sector. This relation bears a similarity to the previous result of correlations in many cases. Other pairs
show no evidence of interclass correlation. However, it is still questionable if there exist intraclass
correlations. Intraclass correlations in each sector are hard to evaluate with the given limited data set
due to the firm’s incomplete loss records. This result is in line with the finding of Herath and Herath
(2011) that shows that cyber risks are correlated with a non-linear dependency. Hofmann and Ramaj
(2011) also noted the interdependence risk structure in a cyber network, and Bashan et al. (2013)
showed that the spatially embedded networks are interdependent and vulnerable to failure. Öĝüt et al.
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Table 4: The fitted INGARCH(p, q) models with a correlated sector’s count as covariates: goodness-of-fit, lag
of autocorrelation, parameter estimates and test statistics

Sector (i)
BCF (1) BUS (2) EDU (3) GOV (4)

Goodness-of-fit Conditional distribution P P P P
BIC 486.401 697.535 570.885 578.464

Lag of p 1 1 1 1
autocorrelation q 1 1 1 1

β0 −0.546 2.267 0.434 0.286
(0.185) (0.473) (0.183) (0.108)

Parameter β1 0.145 0.104 0.020 0.014
(SE) (0.108) (0.113) (0.090) (0.077)

α1 0.318 0.109 0.664 0.718
(0.147) (0.187) (0.150) (0.114)

Covariation
Correlated class (l) BUS BCF BUS MED

γ(i)
l 0.051 0.048 0.011 0.010

(0.008) (0.009) (0.005) (0.003)
Persistence 0.464 0.213 0.684 0.732

Lagrange multiplier test (lag-1) 0.951 0.231 0.749 0.381
Test Lagrange multiplier test (lag-5) 0.948 0.628 0.830 0.788

statistics Lagrange multiplier test (lag-9) 0.734 0.889 0.197 0.127
Ljung-Box test (lag-24) 0.702 0.844 0.347 0.073

ADF test 0.013 <0.01 0.054 <0.01

BCF = banking/credit/financial; BUS = business; EDU = educational; GOV = governmental/military; BIC = Bayesian
information criterion.

(2011) examined the role of correlated risks in information security. In the presence of correlation,
mean, variance, and VaR might not be sufficient for insurance ratemaking, since diversification is not
efficient for reducing risk capital (Chavez-Demoulin et al., 2006). However, the above analysis might
be limited if the characteristics of ever-changing environment for data breaches might diminish the
usefulness of the given data set (CRO Forum, 2014).

A variety of theories in other forms have also explained correlations between groups for cyber risk:
multivariate distributions with the theory of copulas (Clemen and Reilly, 1999; Bohme and Kataria,
2006; Herath and Herath, 2011), copula-based Bayesian network for cyber risk (Mukhopadhyay et al.,
2013), and a two-step risk arrival process considering internal and external correlations by a two-tier
approach (Bohme and Kataria, 2006). For example, Bohme and Kataria (2006) systematically studied
the correlations using t-copula. Next, we consider the INGARCH model with a lagged exogeneous
financial variables as the second kind of covariates. The effect of data breach announcements on the
stock price has been shown to be negative (Cavusoglu et al., 2004; Campbell et al., 2003). However,
we also study the reverse effect that the stock price return or other financial market status affect the
volatility of data breach accidents. We selected two financial metrics: the return of S&P 500 index and
the VIX, that are believed to have volatilities clustered on their own (Jacobsen and Dannenburg, 2007;
Tseng and Li, 2012; Aliyu, 2012). Therefoere, it motivates us to check if the clustered volatilities of
data breaches are fully or partially due to the effect of volatility clustering occurring in the covariate
variable. Table 5 presents the summaries of the best-fit models with the selected covariates. Compared
with the results in Table 2 for the model with no covariate, we notice that including the covariate term
into the previous model marginally increases the likelihood (lowers BIC). Since the best-fit model is
still the INGARCH(p, q) with p = q = 1, the volatility clustering persists even in the presence of
volatility-clustered covariates.

The lagged covariate with a nonzero coefficient might help in predicting the data breach count;
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Table 5: The fitted INGARCH(p, q) models with a lagged exogeneous financial covariated of X(i):
goodness-of-fit, lag of autocorrelation, parameter estimates and test statistics. The model for industry sectors
that are not shown are found to have no lower BICs

Sector (i)
BCF (1) BUS (2) ALL

Goodness-of-fit Conditional distribution P P NB
BIC 509.831 714.782 911.107

Lag of p 1 1 1
autocorrelation q 1 1 1

Covariation X(i)
t−r VIX Return Return

Number of lags (r) 13 8 22

Parameter

β0 4.42e−06 0.123 0.222

(SE)

(0.0296) (0.122) (0.186)
β1 0.179 0.158 0.218

(0.057) (0.071) (0.080)
α1 0.821 0.800 0.727

(0.074) (0.097) (0.106)
η(i) −0.00158 0.00559 0.00519

(0.000748) (0.00236) (0.00248)
σ2 0.015

Persistence 0.999 0.958 0.945
Lagrange multiplier test (lag-1) 0.707 0.745 0.497

Test Lagrange multiplier test (lag-5) 0.528 0.937 0.979
statistics Lagrange multiplier test (lag-9) 0.880 0.998 0.977

Ljung-Box test (up to lag-24) 0.610 0.779 0.149
ADF test <0.01 0.014 0.024

BCF = banking/credit/financial; BUS = business; BIC = Bayesian information criterion.

however, caution needs to be taken since the effect is marginal. Since the coefficient of financial
exploratory variable term has a positive sign, we might conjecture that the act of data breach has
financial or economic motive, though its process has not been concretely studied yet. A high value
in the corresponding financial or economic index might be indicative of an anticipated increase in
data breach occurrence since the signs of the coefficients are positive for all models. For example,
concerning the BUS sector, we guess that a high return in a stock market may motivate a malicious
hacker to break into a secured data repository of any general firms, which has a higher tradable value
in such a bull market. We therefore conjecture that the lagged S&P500 or VIX forecasts the count
frequency of data breach due to financial or psychological volatility. It is also interesting if data
breaches or denial-of-service attacks affect a company’s stock prices (Campbell et al., 2003; Hovav
and Darcy, 2003) in the opposite way.

5. Conclusion

Data breach insurance is considered an effective and efficient means of protection from the leakage
of personal information or important information. In this paper, we analyzed the volatility clustering
of data breach counts, using the ITRC data classified by five industry groups from 2006 to 2015
for data breach records in US. We modeled the data breach counts by the INGARCH(p, q) model
with and without covariates, assuming a Poisson or negative binomial distribution as the conditional
distribution for the mean and the variance.

Empirical results in the INGARCH(1, 1) model without covariates show that the volatility of time
series of data breach counts is clustered in time with short-range time dependence. The volatility has
the one-lag autocorrelation and they are conditional on the one-lag observation and the one-lag mean.
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Therefore, if a large number of data breach losses are observed in the previous month, then a large
number of losses are expected also in the current month. In the INGARCH(1, 1) model including
coincident time series of other industries’ counts as covariates, we found that the volatilities are clus-
tered across industries too and the data breach risk of some industries are correlated. However, in the
INGARCH(1, 1) model with exogenous financial covariates, we observed that the part of volatility
clustering in the original count time series might be marginally explained by the volatility clustering
occurred in the external covariates. In that case, the best covariate is the VIX for the business industry,
the stock return of S&P500 for both the finance industry and all industries combined.

A problem with managing data breach risk is the possibility of unstable losses, which requires
additional solvency capital; therefore, a more delicate design in an insurance policy is needed. As
Biener et al. (2015) noted, once more detailed data becomes available, it would be also interesting
to directly examine the risk drivers of data breach volatility them include to firm sizes (Axtell, 2001;
Bonfim, 2009), breach types, the quality of information, and the risk control of the firm, or entity. In
addition, it would be a prospective topic to study correlation between those insured and to develop a
robust multivariate copula model for data breach risk.
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Öĝüt H, Raghunathan S, and Menon N (2011). Cyber security risk management: public policy im-

plications of correlated risk, imperfect ability to prove loss, and observability of self-protection:
cyber security risk management, Risk Analysis, 31, 497–512.

Pooser DM, Browne MJ, and Arkhangelska O (2018). Growth in the perception of cyber risk: evi-
dence from U.S. P&C insurers, The Geneva Papers on Risk and Insurance - Issues and Practice,
43, 208–223.

Samiev S (2013). GARCH(1, 1) with Exogenous Covariate for EUR/SEK Exchange Rate Volatility:
On the Effects of Global Volatility Shock on Volatility. https://www.diva-portal.org/smash/get/
diva2:676106/FULLTEXT01.pdf

Sen R and Borle S (2015). Estimating the contextual risk of data breach: an empirical approach,
Journal of Management Information Systems, 32, 314–341.

Solove DJ, and Citron DK. 2017. “Risk and Anxiety: A Theory of Data-Breach Harms. Texas Law
Review 96 (4): 737786.

Sornette D, Malevergne Y, and Muzy JF (2004). Volatility fingerprints of large shocks: endogenous
versus exogenous. In The Application of Econophysics (Hideki Takayasu ed, 9–102), Springer,
Tokyo.

Tariq U, Hong MP, and Lhee KS (2006). A Comprehensive Categorization of DDoS Attack and DDoS
Defense Techniques. In Advanced Data Mining and Applications (Xue Li, Osmar R. Zaı̈ane, and
Zhanhuai Li eds, pp. 1025–1036). Lecture Notes in Computer Science, 4093, Springer, Berlin,
Heidelberg.

Tseng JJ and Li SP (2012). Quantifying volatility clustering in financial time series, International
Review of Financial Analysis, 23, 11–19.

Timmer J and Weigend AS (1997). Modeling volatility using state space models, International Jour-
nal of Neural Systems, 8, 385–398.

Wheatley S, Maillart T, and Sornette D (2016). The extreme risk of personal data breaches and the
erosion of privacy, The European Physical Journal B, 89, 7.

Yang Z and Lui JCS (2014). Security adoption and influence of cyber-insurance markets in heteroge-
neous networks, Performance Evaluation, 74, 1–17.

Received April 20, 2020; Revised June 20, 2020; Accepted June 20, 2020


