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Abstract

We examine the rate of substitution of jobs by artificial intelligence using a score called the “weighted ability
rate of substitution (WARS).” WARS is a indicator that represents each job’s potential for substitution by automa-
tion and digitalization. Since the conventional WARS is sensitive to the particular responses from the employees,
we consider a robust version of the indicator. In this paper, we propose the individualized WARS, which is a
modification of the conventional WARS, and compute robust averages and confidence intervals for inference.
In addition, we use the clustering method to statistically classify jobs according to the proposed individualized
WARS. The proposed method is applied to Korean job data, and proposed WARS are computed for five future
years. Also, we observe that 747 jobs are well-clustered according to the substitution levels.
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1. Introduction

Automation and digitalization have changed jobs and employment. Computers have substituted for
a number of jobs and functions, including those of bookkeepers, cashiers, and telephone operators
(Charles et al., 2013). Employment has changed dramatically along with the development of artificial
intelligence (AI). Even art and other creative fields, which have always been seen as distinctly human
domains, have been affected by recent Al

Numerous studies analyze this trend and model the effect of Al on employment. Autor and Dorn
(2013) showed that as the costs of robots decline and technological capabilities expand, robots can be
expected to gradually substitute for labor in a wide range of low-wage service occupations. Frey and
Osborne (2013) estimated the susceptibility of employment to computerization using a Gaussian pro-
cess classifier and concluded that about 47% of total US employment is in the high risk category. This
result implies that the associated occupations may be automated in the next decade. More recently,
Kim (2015) applied the model of Frey and Osborne (2017) to Korean job data and showed that 57%
of jobs in Korea are in danger of being replaced by Al.

Arntz et al. (2016) pointed out that the model proposed by Frey and Osborne (2017) takes an
occupation-based approach and may overestimate the results. Instead, they proposed a new method
that estimates the probability of replacement by taking a task-based approach, and they concluded that,
on average across the 21 OECD countries, only 9% of jobs are automatable. The share of automatable
jobs in Korea is 6%, which is very small compared to the results of Kim (2015).
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Park et al. (2016) compared these two approaches in the context of Korean employment and
introduced the “weighted ability rate of substitution (WARS)” by taking a task-based approach. The
WARS is a new indicator that represents potential of each job for substitution by automation and
digitalization. However, since the WARS is computed from the average responses from the employees,
it can not explain differences between individual employees in a given job. It is also highly sensitive to
outliers. To handle these limitation, we propose a modified version of the WARS based on statistical
methods. We compute an individual-based WARS to account for the variability of employees in
a particular job. For statistical inference, we compute trimmed means and confidence intervals. In
addition, we apply a clustering method to classify jobs based on their replacement rates.

The paper proceeds as follows. In Section 2, we briefly review the conventional WARS and pro-
pose a new version of the WARS and its clustering method. The analysis results and their interpreta-
tions are presented in Section 3. Lastly, Section 4 provides the conclusion and final remarks.

2. Methodology
2.1. Weighted ability rate of substitution

In this section, we first review the original WARS introduced by Park et al. (2016). The survey from
the Korea Network for Occupations and Workers (KNOW) report provides the input variables for
computing the WARS. This annual survey measures the abilities needed to perform tasks related to
each job and the importance of these abilities to the job, and the questionnaire is designed using a
five- or seven-point scale.

Fori=1,...,N,j=1,....,N;, k = 1,...,p, let a;; be the level of the k" ability related to a
task for the i job based on the response of the j individual, and, fori = 1,...,N, j = 1,..., N,
k=1,...,p,let m;y be the level of importance of the kth ability related to a task for the it job based
on the response of the j” individual. Here, N = 747 is the number of jobs in the KNOW survey, N; is
the number of employees in the i job who responded to the KNOW survey, and p = 44 is the number
of abilities in the survey, including “listening and understanding,” “speaking,” and “writing.”

Consider two matrices, A and M, which contain the average responses to the KNOW survey.

e Aisan N X p matrix containing the average abilities required to perform tasks for each job;

A= . S (2.1)
an-q . aN.p
where aii := (1/N) T aije, fori=1,... N, k=1,....p.
e M isan N X p matrix containing the average importance of the abilities for each job;

nmiq ceeo My
M= S 2.2)
my.gp ... Myp
where m; := (1/N,-)Z?]:"1m,<jk, fori=1,...,N,k=1,...,p.

Park et al. (2016) surveyed Al and robot experts to obtain replacement levels for each ability. If the
k™ ability is likely to be replaced by Al in the future, then the experts are asked to give it a high score
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in the questionnaire. These replacement levels were obtained for p = 44 abilities and T = 5 future
time points: the years 2020, 2025, 2030, 2035, and 2045. Let ejk, wherer = 1,..., T, =1,...,q,
and k = 1,..., p, be the replacement level of the k™ ability in future year ¢ according to the I’ expert.
Then, consider the following matrix:

e E,is a g X p matrix containing the replacement levels in future year ¢;
e, ... ¢ »
E=]: . |, fort=2020,2025,62030,2035,2045, (2.3)

! et

eql ap

where g = 21 is the number of experts surveyed. As mentioned above, greater values of ej, indicate
a greater possibility that the k" ability will be replaced by Al in year .

Using A, M, and E;, the following algorithm is the procedure for generating the WARS for the i
job in future year .

1. Define the threshold vector d, as

e [t ~t
d, .= (e,],...,e,p),

where 2, =, - sd(e!,) with &, = (1/g) Tf, ¢}, and sd(e!,) = \[1/(g - D TL, (e}, — & 7.

2. Compare the i” row of A with d. That is, generate the vector b;, of length p as

bi,t = (I {a,-.l < é_tl},I{Cli.Q < 512} yeen ,I{a,».p < étp}),

where I is an indicator function. If b;, contains a large number of ones, then the i’ job can be
easily replaced by Al in future year .

3. Now, we obtain the WARS of the i’ job at time ¢ by multiplying b, by the weight M:
WARSI'J =< bi,t,ﬁlj >, (24)
where i, = {1/(X]_, mi)}(mi, ..., mjp), fori=1,...,N.

2.2. Individualized WARS

Park et al. (2016) averaged the responses to the KNOW survey, as shown in (2.1) and (2.2), and this
method obtains exactly one WARS for each job in year . However, tasks may differ across individual
employees in a given job, and thus, a job’s replacement level may vary (Autor and Handel, 2013;
Arntz et al., 2016). We therefore propose an individualized WARS as an alternative to generating a
WARS using averaged data.

The detailed description of the proposed algorithm is as follows.

1. Define the threshold vector d; as

dl = (E{p' .- 7Efp)7
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Figure 1: Histograms of the individualized WARS for four randomly sampled jobs in the KNOW survey.

where &', = &', —0.5. Note that E; in (2.3) is not available; only &', is provided to the public.

2. Generate the vector b; j, of length pfori=1,...,N, j=1,.. . Nj,andr=1,...,T,as
b, = (I {aija < E,tl} ,I{aijz < é-tz}’ . ,I{a,-j,, < é’p}).
3. Now, the WARS of the j” individual employed in the i” job in year ¢ is defined as
WARS; j, := (b; . ;).
where it;; = {1/(S_, mig}miji, ..., mizp), fori=1,...,N, j=1,..., Ny, t = 2020, ..., 2045,

This measure differs from (2.4) because it uses j in WARS; ;, to index individuals in the i’ job.
Figure 1 shows histograms of the individualized WARS for four randomly selected jobs in the KNOW
survey. These jobs are senior government officials in administration, helicopter pilots, financial man-
agers, and telemarketers. We observe that the individualized WARS has a skewed distribution, imply-
ing that a simple average can provide misleading results.

We now compute summary statistics for inference, as follows.

e Robust WARS

We consider trimmed means instead of simple means since the distribution of the individualized
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WARS is skewed (Figure 1). Then, the WARS for the i’ job in future year ¢ is defined as
Ni—k
WR%z}jWﬂ&m 2.5)
Jj=1+k
where k = | N; X a], with a = 0.05. Here, | x] returns the greatest integer less than or equal to x.
Because we exclude extreme values of the WARS in computing its average value, the proposed

WARS is more robust to outliers than those of Park et al. (2016). We call this proposed robust
WARS the RWARS.

e Bootstrapping-based confidence interval

For inference, we compute the confidence interval (CI) for the RWARS using bootstrapping. Efron
(1979) first proposed the bootstrapping method, which is based on a resampling procedure, to es-
timate standard errors and biases. However, ClIs can also be estimated using the bootstrapping
method. Bootstrapping does not depend on the distribution assumption and provides more accu-
rate results than conventional methods (Efron and Tibshirani, 1994; Carpenter and Bithell, 2000;
Mudelsee and Alkio, 2007).

Here, we use the bootstrap CI proposed by Efron (1987), that is, the nonparametric BC, method,
which is a bias-corrected and accelerated version of the CI.

Let 6 be the estimate of 6 based on the observed data, and let §*(b) be the estimate of 0 using the
bootstrap sample b = 1,..., B. Then, define the cumulative density function (cdf) of 0*(b) as

ﬁ@:%ﬂ@@<ab=u“ﬁ}

Then, the (1 — @) X 100% BC, interval is given by

<ﬁ71 (Za) s I:I71 (Zl—[l/)) > (26)
with
= _ 20 t+ 2
Za= (Zo + T-at 12 2o+ Za)), 2.7

where ®(-) is the standard normal cdf and z, = ®~ ().

This interval depends on two parameters, ¢ and zp, which are an acceleration parameter and a
bias-correction factor, respectively. If both a and zy equal zero, (2.6) is simply obtained from the
percentiles of the bootstrap replications. We estimate z as

o (#lerwy<b. p=1.....B]
0= [ Z ]’

and we estimate a as

R > (8o - 9(1’))3
a= ,

6 {Z?=1 (B0 - %)2}5

where ; is the estimate of 6 excluding the i observation and 8., = Y, 6 /n.

For more details on the nonparametric BC, method, see Efron and Tibshirani (1994).
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2.3. Job clustering based on the WARS

Using the RWARS in (2.5), we cluster jobs based on the replacement potential. Park et al. (2016)
also classified jobs using the WARS, but they simply divided the jobs into two groups using a thresh-
old, 0.7, that was derived by Frey and Osborne (2017). They grouped jobs with a WARS above 0.7
into the “high risk group” and other jobs into the “low risk group.” In addition, they calculated the
geometric mean of the relative rates of change derived using the years 2016, 2020, and 2025. Using
this geometric mean as a threshold, they defined two groups: the “high-changeable group” and the
“low-changeable group.”

Here, we statistically cluster the jobs using the density-based spatial clustering of applications
with noise (DBSCAN) algorithm. The DBSCAN algorithm is a density-based clustering method that
uses a non-parametric algorithm (Ester ef al., 1996). It groups points that are closely packed together
and marks outliers points that lie alone in low-density regions. The DBSCAN algorithm has several
advantages. First, unlike other clustering methods, it does not require the number of clusters in the data
to be specified a priori. Furthermore, it can find arbitrarily shaped clusters, and is robust to outliers.

To apply the DBSCAN algorithm, two hyper-parameters need to be determined:

e epsilon (eps): Two points are considered neighbors if the distance between them is below the
threshold epsilon.

e min.samples (minPts): Min.samples is the minimum number of neighbors a given point that must
be classified as a core point.

In this study, we follow heuristic guidelines for these parameters. minPts is set equal to 2 X d,
where d is the dimension of the dataset (Schubert et al., 2017), and eps is determined based on the
k-dist plot. The average distance from every point to its k nearest neighbors is computed, and these
k-distances are plotted in an ascending order. We find an elbow point and define the distance of this
point as eps (Ester et al., 1996).

More details of the DBSCAN algorithm are provided by Tran et al. (2013).

3. Results
3.1. Data

In this study, we primarily use the 2015 KNOW survey, and also use the 2017 KNOW survey for newly
introduced jobs, such as 3D printing technicians and peer-to-peer lending specialist. The dataset and
survey are provided by the “Korea Employment Information Service” (https://www.keis.or.kr).
We consider 747 jobs in the analysis.

3.2. Modified WARS

The individualized WARS values are computed for 747 jobs, and the RWARS and its CI for four
randomly selected jobs are presented in Figure 2. We observe that the RWARS for food delivery is
relatively high, whereas the RWARS for specialist surgeons is less than 0.6 even in 2045. However,
the CI of the RWARS for specialist surgeons has widened over time. We also observe the difference
of slope of RWARS. The RWARS for restaurant managers are steeper than that of food delivers.

Table 1 presents the list of jobs with large and small RWARS values in 2025. Similar results
are obtained for other future years, but they are omitted from this study. The RWARS is larger for
shopping hosts and farmers than for jobs that require more advanced abilities (such as comprehension
or analytic thinking) such as credit analysts and accountants.
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Figure 2: RWARS and bootstrapping CI for four randomly selected jobs in the KNOW survey.

Table 1: List of jobs with large and small RWARS values in 2025

Job 2025 RWARS (95% C.I)
0.857 (0.798, 0.923)
0.824 (0.766, 0.893)
0.787 (0.750, 0.833)
0.784 (0.737, 0.840)

Shopping Hosts

Domestic Chores Helpers

Crop Farmers

Cement and Mineral Products Production Machine Operators

Foreign Exchange Dealers
Credit Analysts

Accountants

Financial Investment Analysts

0.120 (0.082, 0.156)
0.109 (0.063, 0.150)
0.103 (0.060, 0.137)
0.102 (0.068, 0.127)

The box-plot in Figure 3 is used to compare the proposed RWARS with that of Park er al. (2016).
We observe that the variance of the RWARS is lower than the original WARS, and the median of
the RWARS is lower than the original WARS in 2030, 2035, and 2045, indicating that the proposed

method is more conservative for estimates in the far future.

3.3. Clustering results

We apply the DBSCAN clustering method to the RWARS with minPts = 6 and eps = 0.3. We only
use the RWARS in 2020, 2025, and 2030 for the clustering analysis because the reliability of the
RWARS declines with time.
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Figure 3: Box-plot of the original WARS and the proposed RWARS.

— group1
0.75 - group2
= group3

2020 2025 2030

Figure 4: Average RWARS with three cluster groups.

The DBSCAN results show three clustering groups. Figure 4 plots the average RWARS in each
group and Table 2 presents the list of jobs. Note that 12 jobs are considered as outliers in the DBSCAN
algorithm and excluded from the results. The 12 outlier jobs are Product Planners Poet, Novelist, Play-
ers, Back Dancers, Discs Production Planners, Shopping Hosts, Domestic Chore Helpers, Bath Atten-
dants, General Machinery Assemblers, Metal Processing Related Operators, and Telecommunication
Network Operation Engineers. Especially, ‘Shopping Hosts’ and ‘Domestic Chores Helpers’ have the
highest RWARS in 2025, while the ‘Metal Processing Related Operators’ has the highest RWARS in
2030.

We observe that group 3 has the largest RWARS, which implies that the jobs in group 3 are at
a high risk of replacement. The jobs in group 2, which includes jobs like accountants and trading
brokers, have the smallest RWARS. In addition, the RWARS for group 2 has a gentle slope, indicating
that the jobs in group 2 experience less change over time.
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Table 2: Clustering results obtained from the DBSCAN algorithm. The numbers in parentheses indicate the
number of jobs in each group.

Group 1 (705) Group 2 (9) Group 3 (21)
Central Government Legislators Accountants Displayers
Local Government Legislators Futures Trading Brokers Door-to-Door Deliverers
Senior Corporate Officials Foreign Exchange Dealers Guards
General and Human Resources Managers Public Prosecutors Cleaners

4. Conclusion and discussion

In this study, we investigate the conventional WARS introduced by Park et al. (2016), and we improve
it statistically. We propose an individualized WARS and compute its trimmed mean and CI for infer-
ence. The proposed method is applied to the KNOW survey, and the results show that this method
classifies jobs well according to their replacement risk.

This study uses limited input data from the KNOW survey, meaning that the results can be im-
proved with richer information related to jobs and employment. More information, such as salary data,
can also be used to better interpret the results.
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