DOI QR코드

DOI QR Code

Bayesian estimation for the exponential distribution based on generalized multiply Type-II hybrid censoring

  • 투고 : 2020.02.26
  • 심사 : 2020.04.18
  • 발행 : 2020.07.31

초록

The multiply Type-II hybrid censoring scheme is disadvantaged by an experiment time that is too long. To overcome this limitation, we propose a generalized multiply Type-II hybrid censoring scheme. Some estimators of the scale parameter of the exponential distribution are derived under a generalized multiply Type-II hybrid censoring scheme. First, the maximum likelihood estimator of the scale parameter of the exponential distribution is obtained under the proposed censoring scheme. Second, we obtain the Bayes estimators under different loss functions with a noninformative prior and an informative prior. We approximate the Bayes estimators by Lindleys approximation and the Tierney-Kadane method since the posterior distributions obtained by the two priors are complicated. In addition, the Bayes estimators are obtained by using the Markov Chain Monte Carlo samples. Finally, all proposed estimators are compared in the sense of the mean squared error through the Monte Carlo simulation and applied to real data.

키워드

참고문헌

  1. Chan PS, Ng HKT, and Su F (2015). Exact likelihood inference for the two-parameter exponential distribution under Type-II progressively hybrid censoring, Metrika, 78, 747-770. https://doi.org/10.1007/s00184-014-0525-5
  2. Chandrasekar B, Childs A, and Balakrishnan N (2004). Exact likelihood inference for the exponential distribution under generalized Type-I and Type-II hybrid censoring, Naval Research Logistics (NRL), 51, 994-1004. https://doi.org/10.1002/nav.20038
  3. Childs A, Balakrishnan N, and Chandrasekar B (2012). Exact distribution of the MLEs of the parameters and of the quantiles of two-parameter exponential distribution under hybrid censoring, Statistics, 46, 441-458. https://doi.org/10.1080/02331888.2010.538476
  4. Childs A, Chandrasekar B, Balakrishnan N, and Kundu D (2003). Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution, Annals of the Institute of Statistical Mathematics, 55, 319-330. https://doi.org/10.1007/BF02530502
  5. Cho YS, Sun HK, and Lee KJ (2015). Exact likelihood inference for an exponential parameter under generalized progressive hybrid censoring scheme, Statistical Methodology, 23, 18-34. https://doi.org/10.1016/j.stamet.2014.09.002
  6. Epstein B (1954). Truncated life tests in the exponential case, The Annals of Mathematical Statistics, 25, 555-564. https://doi.org/10.1214/aoms/1177728723
  7. Ganguly A, Mitra S, Samanta D, and Kundu D (2012). Exact inference for the two-parameter exponential distribution under Type-II hybrid censoring, Journal of Statistical Planning and Inference, 142, 613-625. https://doi.org/10.1016/j.jspi.2011.08.001
  8. Kang SB, Cho YS, Han JT, and Kim J (2012). An estimation of the entropy for a double exponential distribution based on multiply Type-II censored samples, Entropy, 14, 161-173. https://doi.org/10.3390/e14020161
  9. Kang SB and Park SM (2005). Estimation for the exponentiated exponential distribution based on multiply Type-II censored samples, Communications for Statistical Applications and Methods, 12, 643-652. https://doi.org/10.5351/CKSS.2005.12.3.643
  10. Kang SB, Seo JI, and Kim YK (2013). Estimation for two-parameter generalized exponential distribution based on records, Communications for Statistical Applications and Methods, 20, 29-39. https://doi.org/10.5351/CSAM.2013.20.1.029
  11. Lee WH and Lee KJ (2018). Estimating the parameter of an exponential distribution under multiply Type-II hybrid censoring, Journal of the Korean Data and Information Science Society, 29, 807-814. https://doi.org/10.7465/jkdi.2018.29.3.807
  12. Lindley DV (1980). Approximate Bayesian methods, Trabajos de estadistica y de investigacion operativa, 31, 223-245. https://doi.org/10.1007/BF02888353
  13. Saracoglu B, Kinaci I, and Kundu D (2012). On estimation of R = P(Y < X) for exponential distribution under progressive Type-II censoring, Journal of Statistical Computation and Simulation, 82, 729-744. https://doi.org/10.1080/00949655.2010.551772
  14. Singh U and Kumar A (2007). Bayesian estimation of the exponential parameter under a multiply Type-II censoring scheme, Austrian Journal of Statistics, 36, 227-238.
  15. Tierney L and Kadane JB (1986). Accurate approximations for posterior moments and marginal densities, Journal of the American Statistical Association, 81, 82-86. https://doi.org/10.1080/01621459.1986.10478240
  16. Wang L and Li H (2019). Inference for exponential competing risks data under generalized progressive hybrid censoring, Communications in Statistics-Simulation and Computation, 1-17.
  17. Xia ZP, Yu JY, Cheng LD, Liu LF, and Wang WM (2009). Study on the breaking strength of jute fibres using modified Weibull distribution, Composites Part A: Applied Science and Manufacturing, 40, 54-59. https://doi.org/10.1016/j.compositesa.2008.10.001