DOI QR코드

DOI QR Code

Fiber-optic humidity sensor system for the monitoring and detection of coolant leakage in nuclear power plants

  • Kim, Hye Jin (Chung-Ang University, School of Energy Systems Engineering) ;
  • Shin, Hyun Young (Chung-Ang University, School of Energy Systems Engineering) ;
  • Pyeon, Cheol Ho (Kyoto University, Research Reactor Institute) ;
  • Kim, Sin (Chung-Ang University, School of Energy Systems Engineering) ;
  • Lee, Bongsoo (Chung-Ang University, School of Energy Systems Engineering)
  • Received : 2019.08.06
  • Accepted : 2020.01.26
  • Published : 2020.08.25

Abstract

In this study, we developed a fiber-optic humidity sensor (FOHS) system for the monitoring and detection of coolant leakage in nuclear power plants. The FOHS system includes an FOHS, a spectrometer, a halogen white-light source, and a Y-coupler. The FOHS is composed of a humidity-sensing material, a metal tube, a multi-mode plastic optical fiber, and a subminiature version A (SMA) fiber-optic connector. The humidity-sensing material is synthesized from a mixture of polyvinylidene fluoride (PVDF) in dimethyl sulfoxide (DMSO) and hydroxyethyl cellulose (HEC) in distilled water. We measured the optical intensity of the light signals reflected from the FOHS placed inside the humidity chamber with relative humidity (RH) variation from 40 to 95%. We found that the optical intensity of the sensing probe increased linearly with the RH. The reversibility and reproducibility of the FOHS were also evaluated.

Keywords

References

  1. Operational performance information system for nuclear power plant (POIS). http://opis.kins.re.kr/opis?act=KEOBA4300P&eventSeqn=782 (2020.01.21).
  2. Operational performance information system for nuclear power plant (POIS). http://opis.kins.re.kr/opis?act=KEOBA4300P&eventSeqn=802 (2020.01.21).
  3. Operational performance information system for nuclear power plant (POIS). http://opis.kins.re.kr/opis?act=KEOBA4300P&eventSeqn=923 (2020.01.21).
  4. N.J. Cho, S.B. Im, The evaluation for leakage rate of reactor coolant pump bolting in nuclear power plants, Korean Soc. Hazard Mitig. 12 (2012) 25-30.
  5. J.S. Kim, J.H. Kim, H.Y. Bae, C.Y. Oh, Y.J. Kim, K.S. Lee, T.K. Song, Welding residual stress distributions for dissimilar metal nozzle butt welds in pressurized water reactors, Trans. Korean Soc. Mech. Eng. A 36 (2012) 137-148.
  6. Y. Choi, J.H. Park, A study on severe accident management scheme using LOCA sequence database system, J. Korean Surg. Soc. 29 (2014) 172-178.
  7. D.S. Kupperman, T.N. Claytor, Current Practice and Development Efforts for Leak Detection in US Reactor Primary Systems, Conference: CSNI Specialist Meeting on Continuous Monitoring Techniques for Assuring Coolant Circuit Integrity, 1985. London (England).
  8. S. Slalov, I. Bakalov, H. Vassilev, Detection of Primary Coolant Leaks in NPP, International Meeting 'Nuclear Power in Eastern Europe: Safety, European Integration, Free Electricity Market' and The Tenth Anniversary of Bulgarian Nuclear Society, Varna (Bulgaria), 2001, p. 32.
  9. L. Lee, H. Park, T.S. Kim, K.H. Ko, D.Y. Jeong, A new sensor for detection of coolant leakage in nuclear power plants using off-axis integrated cavity output spectroscopy, Nucl. Instrum. Methods Phys. Res. 678 (2012) 8-12. https://doi.org/10.1016/j.nima.2012.02.039
  10. Y. Zheng, D. Hu, Y. Dai, Simulation of the airborne radioactive substance distribution and monitoring of coolant leakage in a typical Nuclear Reactor Containment, Ann. Nucl. Energy 87 (2016) 462-470. https://doi.org/10.1016/j.anucene.2015.09.018
  11. D.S. Kupperman, T.N. Claytor, Acoustic leak detection for reactor coolant systems, Nucl. Eng. Des. 86 (1985) 13-20. https://doi.org/10.1016/0029-5493(85)90204-3
  12. S.B. Shimanskii, B.P. Strelkov, A.N. Anan'ev, A.M. Lyubishkin, T. Iijima, H. Mochizuki, Y. Kasai, K. Yokota, J. Kanazawa, Acoustic method of leak detection using high-temperature microphones, Atom. Energy 98 (2005) 89-96. https://doi.org/10.1007/s10512-005-0175-9
  13. D.S. Hong, G.J. Lee, A study on the radiation exposure trend at Kori nuclear power plants for the reduction of occupational radiation dose, in: Proceedings of the Korean Nuclear Society Autumn Meeting 35, 2003.
  14. E.S. Park, K. Moon, H.N. Kim, W.J. Lee, Y.W. Jin, Radiation exposure and cancer mortality among nuclear power plant workers a meta-analysis, J. Prev. Med. Pub. Health 43 (2010) 185-192. https://doi.org/10.3961/jpmph.2010.43.2.185
  15. W.J. Yoo, K.W. Jang, J.K. Seo, J.Y. Heo, J.S. Moon, J.H. Jun, J.Y. Park, B. Lee, Development of optical fiber-based respiration sensor for noninvasive respiratory monitoring, Opt. Rev. 18 (2011) 132-138. https://doi.org/10.1007/s10043-011-0010-6
  16. B. Lee, W.Y. Choi, J.K. Walker, Polymer-polymer miscibility study for plastic gradient index optical fiber, Polym. Eng. Sci. 40 (2000) 1996-1999. https://doi.org/10.1002/pen.11331
  17. J.S. Jang, W.J. Yoo, S.H. Shin, D.E. Lee, M. Kim, H.J. Kim, Y.B. Song, K.W. Jang, S. Cho, B. Lee, Fiber-optic temperature sensor using a silicone oil and an OTDR, Trans. Korean Inst. Electr. Eng. 64 (2015) 1592-1597. https://doi.org/10.5370/KIEE.2015.64.11.1592
  18. J. Yuan, C. Zhao, M. Ye, J. Kang, Z. Zhang, S.A. Jin, Fresnel reflection-based optical fiber sensor system for remote refractive index measurement using an OTDR, Photonic Sensors 4 (2014) 48-52. https://doi.org/10.1007/s13320-013-0131-6
  19. H. Su, X.G. Huang, Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions, Sensor. Actuator. B 126 (2007) 579-582. https://doi.org/10.1016/j.snb.2007.04.008
  20. S. Muto, O. Suzuki, T. Amano, M. Morisawa, A plastic optical fibre sensor for real-time humidity monitoring, Meas. Sci. Technol. (2003) 14. https://doi.org/10.1088/0957-0233/16/1/003
  21. S.G. Kim, S.H. Shin, K.W. Jang, H. Jeon, J.S. Jang, J.S. Kim, G. Kwon, W.J. Yoo, S. Cho, T. Song, B. Lee, Characterization of the fiber-optic goniometer for measuring knee joint angle, Sens. Lett. 13 (2015) 669-673. https://doi.org/10.1166/sl.2015.3481
  22. A. Lokman, M. Batumalay, S.W. Harun, H. Arof, Humidity sensor based on tapered single mode fiber coated with a hydroxyethyl cellulose polyvinylidene fluoride composite, Ukr. J. Phys. Opt. 15 (2014) 96-101. https://doi.org/10.3116/16091833/15/2/96/2014
  23. L. Xia, L. Li, W. Li, T. Kou, D. Liu, Novel optical fiber humidity sensor based on a no-core fiber structure, Sensor. Actuator. 190 (2013) 1-5. https://doi.org/10.1016/j.sna.2012.10.041
  24. J. Millman, H. Taub, Pulse, Digital, and Switching Waveforms, first ed., McGraw-Hill Inc., US, 1965.

Cited by

  1. Sol-Gel Coating Membranes for Optical Fiber Sensors for Concrete Structures Monitoring vol.11, pp.10, 2020, https://doi.org/10.3390/coatings11101245
  2. Review of Optical Humidity Sensors vol.21, pp.23, 2020, https://doi.org/10.3390/s21238049
  3. Theoretical Analysis and Optimization of Extrinsic Fabry-Perot Interferometer Optical-fiber Humidity-sensor Structures vol.5, pp.6, 2020, https://doi.org/10.3807/copp.2021.5.6.652