DOI QR코드

DOI QR Code

Signal processing method based on energy ratio for detecting leakage of SG using EVFM

  • Xu, Wei (School of Electrical and Automation Engineering, Hefei University of Technology) ;
  • Xu, Ke-Jun (School of Electrical and Automation Engineering, Hefei University of Technology) ;
  • Yan, Xiao-Xue (School of Electrical and Automation Engineering, Hefei University of Technology) ;
  • Yu, Xin-Long (School of Electrical and Automation Engineering, Hefei University of Technology) ;
  • Wu, Jian-Ping (School of Electrical and Automation Engineering, Hefei University of Technology) ;
  • Xiong, Wei (School of Electrical and Automation Engineering, Hefei University of Technology)
  • 투고 : 2019.06.08
  • 심사 : 2020.01.19
  • 발행 : 2020.08.25

초록

In the sodium-cooled fast reactor, the steam generator is a heat exchange device between sodium and water, which may cause leakage, resulting in a sodium-water reaction accident, which in turn affects the safe operation of the entire nuclear reactor. To this end, the electromagnetic vortex flowmeter is used to detect leakage of the steam generator and its signal processing method is studied in this paper. The hydraulic experiment was carried out by using water instead of liquid sodium, and the sensor output signal of the electromagnetic vortex flowmeter under different gas injection volumes was collected. The bubble noise signal is reflected by the base line of the sensor output signal. According to the relationship between the proportion of the bubble noise signal in the sensor output signal and the gas injection volume, a signal processing method based on the energy ratio calculation is proposed to detect whether the water contains bubbles. The gas injection experiment of liquid sodium was conducted to verify the effectiveness of the signal processing method in the detection of bubbles in sodium, and the minimum detectable leak rate of water in the steam generator was detected to be 0.2 g/s.

키워드

참고문헌

  1. K.K. Rajan, T. Jayakumar, P.K. Aggarwal, V. Vinod, Sodium flow measurement in large pipelines of sodium cooled fast breeder reactors with bypass type flow meters, Ann. Nucl. Energy 87 (2016) 74-80. https://10.1016/j.anucene.2015.08.018.
  2. S. Kishore, A.A. Kumar, S. Chandramouli, B.K. Nashine, K.K. Rajan, P. Kalyanasundaram, S.C. Chetal, An experimental study on impingement wastage of Mod 9Cr 1Mo steel due to sodium water reaction, Nucl. Eng. Des. 243 (2012) 49-55. https://10.1016/j.nucengdes.2011.11.008.
  3. D.J. Hayes, Water leaks in sodium-heated fast reactor boilers, Phys. Technol. 9 (3) (1978) 96, https://doi.org/10.1088/0305-4624/9/3/I04.
  4. B. Raj, S.L. Mannan, P.R.V. Rao, M.D. Mathew, Development of fuels and structural materials for fast breeder reactors, Sadhana 27 (5) (2002) 527-558, https://doi.org/10.1007/bf02703293.
  5. J.Y. Jeong, T.J. Kim, J.M. Kim, B.H. Kim, N.C. Park, Analysis of micro-leak sodium-water reaction phenomena in a sodium-cooled fast reactor steam generator, Kor. J. Chem. Eng. 26 (4) (2009) 1004-1008, https://doi.org/10.1007/s11814-009-0167-x.
  6. V. Sumathi, S. Jalaldeen, P. Selvaraj, S. Murugan, Vibration of core subassemblies due to large sodiumewater reaction in the steam generator of a Liquid Metal Fast Breeder Reactor, Prog. Nucl. Energy 106 (2018) 231-239. https://10.1016/j.pnucene.2018.03.005.
  7. R. Hans, K. Dumm, Leak detection of steam or water into sodium in steam generators of liquid-metal fast breeder reactors, Atom. Energy Rev. 15 (4) (1977) 611-699, https://doi.org/10.1016/0378-4487(77)80006-X.
  8. T. Gnanasekaran, K.H. Mahendran, R. Sridharan, V. Ganesan, G. Periaswami, C.K. Mathews, An electrochemical hydrogen meter for measurement of dissolved hydrogen in liquid sodium, Nucl. Technol. 90 (3) (1990) 408-416, https://doi.org/10.1016/0168-583X(90)90630-D.
  9. K.H. Mahendran, R. Sridharan, T. Gnanasekaran, G. Periaswami, A meter for measuring hydrogen concentration in argon cover gas of sodium circuits: design and development, Ind. Eng. Chem. Res. 37 (4) (1998) 1398-1403, https://doi.org/10.1021/ie970508j.
  10. R. Sridharan, K.H. Mahendran, S. Nagaraj, T. Gnanasekaran, G. Periaswami, An electrochemical hydrogen meter for measuring hydrogen in sodium using a ternary electrolyte mixture, J. Nucl. Mater. 312 (1) (2003) 10-15, https://doi.org/10.1016/S0022-3115(02)01550-7.
  11. R. Parthasarathy, S. Premalatha, R. Sridharan, Plant-oriented instrumentation for hydrogen detection in sodium for fast breeder reactors, Instrum. Sci. Technol. 39 (1) (2011) 63-77, https://doi.org/10.1080/10739149.2010.537720.
  12. D.R. Vissers, J.T. Holmes, P.A. Nelson, L.G. Bartholme, A hydrogen monitor for detection of leaks in LMFBR steam generators, Nucl. Technol. 12 (2) (1971) 218-225, https://doi.org/10.1080/10.13182/nt71-a31029.
  13. D.R. Vissers, J.T. Holmes, L.G. Bartholme, P.A. Nelson, A hydrogen-activity meter for liquid sodium and its application to hydrogen solubility measurements, Nucl. Technol. 21 (3) (1974) 235-244, https://doi.org/10.13182/NT74-A31394.
  14. F.A. Kozlov, V.A. Egorov, P.S. Kozub, E.K. Kuznetsov, V.V. Matyukhin, V.V. Leshkov, G.I. Laptev, I.D. Ponimash, Hydrogen indicator for monitoring the hermeticity of sodium-water steam generators, Sov. Atom. Energy 58 (6) (1985) 478-482, https://doi.org/10.1007/BF01130856.
  15. A.R. Marklund, J. Dufek, Development and comparison of spectral methods for passive acoustic anomaly detection in nuclear power plants, Appl. Acoust. 83 (2014) 100-107, https://doi.org/10.1016/j.apacoust.2014.03.014.
  16. G.S. Srinivasan, O.P. Singh, R. Prabhakar, Leak noise detection and characterisation using statistical features, Ann. Nucl. Energy 27 (4) (2000) 329-343, https://doi.org/10.1016/S0306-4549(99)00064-X.
  17. X. Niu, X. Yang, Application of wavelet transform on acoustic leak detection for steam generators in liquid metal fast breeder reactor, Atomic Energy Sci. Technol. 37 (4) (2003) 289-293, https://doi.org/10.1142/S0252959903000104.
  18. A.R. Marklund, F. Michel, Application of a new passive acoustic leak detection approach to recordings from the Dounreay prototype fast reactor, Ann. Nucl. Energy 85 (2015) 175-182, https://doi.org/10.1016/j.anucene.2015.05.010.
  19. A.R. Marklund, S. Kishore, V. Prakash, K.K. Rajan, F. Michel, Passive acoustic leak detection for sodium cooled fast reactors using hidden markov models, IEEE Trans. Nucl. Sci. 63 (3) (2016) 1463-1470, https://doi.org/10.1109/TNS.2015.2502400.
  20. A.R. Marklund, F. Michel, H. Anglart, Demonstration of an improved passive acoustic fault detection method on recordings from the Phenix steam generator operating at full power, Ann. Nucl. Energy 101 (2017) 1-14, https://doi.org/10.1016/j.anucene.2016.10.003.
  21. M. Kumar, P. Tordjeman, W. Bergez, M. Cavaro, Note: void effects on eddy current distortion in two-phase liquid metal, Rev. Sci. Instrum. 86 (10) (2015), https://doi.org/10.1063/1.4932990, 106104.
  22. M. Kumar, P. Tordjeman, W. Bergez, M. Cavaro, K. Paumel, J.P. Jeannot, Towards quantitative void fraction measurement with an eddy current flowmeter for fourth generation sodium cooled fast reactors: a simplified model, IEEE Trans. Nucl. Sci. (2016) 1-6, https://doi.org/10.1109/tns.2016.2542191.
  23. M. Kumar, W. Bergez, P. Tordjeman, R. Arinero, K. Paumel, Magnetic flux distortion in two-phase liquid metal flow: model experiment, J. Appl. Phys. 119 (18) (2016), https://doi.org/10.1063/1.4950792, 185105.
  24. R. Ramakrishna, Detection of void in sodium cooled fast reactors using Eddy current based technique, in: Proceedings of the Twenty-Fifth National Seminar and International Exhibition on Non Destructive Evaluation-NDE for Make in India: Abstracts, 2015. https://www.ndt.net/article/nde-india2015/papers/paper-48.pdf.
  25. R. Guichou, P. Tordjeman, R. Zamansky, W. Bergez, K. Paumel, Experimental study of bubble detection in liquid metal. https://hal.archives-ouvertes.fr/hal-01779034/document, 2017.
  26. L.A. Adamovskii, Vortex electromagnetic flow meters for liquid metal coolants, Meas. Tech. 50 (2007) 58-65, https://doi.org/10.1007/s11018-007-0023-5.
  27. L.A. Adamovskii, Vortex electromagnetic flowmeter-counter for liquids with ionic conductivity, Meas. Tech. 51 (11) (2008) 1191-1199, https://doi.org/10.1007/s11018-009-9185-7.
  28. W. Xu, K.-J. Xu, J.-P. Wu, C.-C. Wang, Bubble detection in sodium flow using EVFM and correlation coefficient calculation, Ann. Nucl. Energy 129 (2019) 472-481, https://doi.org/10.1016/j.anucene.2019.02.015.
  29. K.-J. Xu, G. Wang, W. Xu, M.-W. Zou, C.-C. Wang, C.-L. Mu, C.-L. Shao, J.-P. Wu, L.-L. Liang, A. Li, A Sodium Bubble Noise Detector Based on Signal-To-Noise Ratio Calculation, 2017. CN201710708810.
  30. W. Xu, K.-J. Xu, J.-P. Wu, X.-L. Yu, X.-X. Yan, Peak-to-peak standard deviation based bubble detection method in sodium flow with electromagnetic vortex flowmeter, Rev. Sci. Instrum. 90 (2019), 065105. https://doi:10.1063/1.5089690.
  31. T.J. Kim, V.S. Yugay, J.Y. Jeong, J.M. Kim, B.H. Kim, T.H. Lee, Y.B. Lee, Y.I. Kim, D. Hahn, Acoustic leak detection technology for water/steam small leaks and microleaks into sodium to protect an SFR steam generator, Nucl. Technol. 170 (2) (2010) 360-369, https://doi.org/10.2478/v10035-008-0034-1.
  32. T.J. Kim, V.S. Yughay, S.T. Hwang, B.H. Kim, J.H. Park, C.S. Choi, Hydrogen bubble characteristics during a water-sodium leak accident in a steam generator, J. Ind. Eng. Chem. 6 (6) (2000) 395-402. https://www.cheric.org/PDF/JIEC/IE06/IE06-6-0395.pdf.
  33. P. Kalyanasundaram, B. Raj, V. Prakash, R. Ranga, Detection of simulated steam leak into sodium in steam generator of PFBR by argon injection using signal analysis techniques, Nucl. Technol. 182 (3) (2013) 249-258, https://doi.org/10.13182/NT13-A16977.
  34. S. Poornapushpakala, C. Gomathy, J.I. Sylvia, B. Babu, Design, development and performance testing of fast response electronics for eddy current flowmeter in monitoring sodium flow, Flow Meas. Instrum. 38 (2014) 98-107. https://10.1016/j.flowmeasinst.2014.05.004.