DOI QR코드

DOI QR Code

Application case for phase III of UAM-LWR benchmark: Uncertainty propagation of thermal-hydraulic macroscopic parameters

  • Mesado, C. (Institute for the Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politecnica de Valencia) ;
  • Miro, R. (Institute for the Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politecnica de Valencia) ;
  • Verdu, G. (Institute for the Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politecnica de Valencia)
  • Received : 2019.08.20
  • Accepted : 2020.01.12
  • Published : 2020.08.25

Abstract

This work covers an important point of the benchmark released by the expert group on Uncertainty Analysis in Modeling of Light Water Reactors. This ambitious benchmark aims to determine the uncertainty in light water reactors systems and processes in all stages of calculation, with emphasis on multi-physics (coupled) and multi-scale simulations. The Gesellschaft für Anlagen und Reaktorsicherheit methodology is used to propagate the thermal-hydraulic uncertainty of macroscopic parameters through TRACE5.0p3/PARCSv3.0 coupled code. The main innovative points achieved in this work are i) a new thermal-hydraulic model is developed with a highly-accurate 3D core discretization plus an iterative process is presented to adjust the 3D bypass flow, ii) a control rod insertion occurrence -which data is obtained from a real PWR test- is used as a transient simulation, iii) two approaches are used for the propagation process: maximum response where the uncertainty and sensitivity analysis is performed for the maximum absolute response and index dependent where the uncertainty and sensitivity analysis is performed at each time step, and iv) RESTING MATLAB code is developed to automate the model generation process and, then, propagate the thermal-hydraulic uncertainty. The input uncertainty information is found in related literature or, if not found, defined based on expert judgment. This paper, first, presents the Gesellschaft für Anlagen und Reaktorsicherheit methodology to propagate the uncertainty in thermal-hydraulic macroscopic parameters and, then, shows the results when the methodology is applied to a PWR reactor.

Keywords

References

  1. K. Ivanov, M. Avramova, S. Kamerow, I. Kodeli, E. Sartori, E. Ivanov, O. Cabellos, Benchmarks for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRs-Volume I: Specification and Support Data for Neutronics Cases (Phase I), Tech. Rep. (2013). Organisation for Economic Co-Operation and Development, Nuclear Energy Agency-OECD/NEA.
  2. M. Avramova, K. Ivanov, B. Krzykacz-Hausmann, K. Velkov, A. Pautz, Y. Perin, Uncertainty analysis of COBRA-TF void distribution predictions for the OECD/NRC BFBT Benchmark, in: Proceedings of the International Conference on advances in mathematics, computational methods, and reactor physics (M&C'09), 2009.
  3. C. Mesado, A. Soler, T. Barrachina, R. Miro, J. Garcia-Diaz, R. Macian-Juan, G. Verdu, Uncertainty and sensitivity of neutron kinetic parameters in the dynamic response of a PWR rod ejection accident coupled simulation, Sci. Technol. Nucl. Install. (2012), https://doi.org/10.1155/2012/625878.
  4. A. Hernandez-Solis, Uncertainty and Sensitivity Analysis Applied to LWR Neutronic and Thermal-Hydraulic Calculations, Ph.D. thesis, Chalmers University of Technology, 2012.
  5. G. Strydom, Uncertainty and sensitivity analyses of a pebble bed HTGR loss of cooling event, Sci. Technol. Nucl. Install. (2013), https://doi.org/10.1155/2013/426356.
  6. S. Wilks, Determination of sample sizes for setting tolerance limits, Ann. Math. Stat. 12 (1) (1941) 91-96. https://doi.org/10.1214/aoms/1177731788
  7. S. Wilks, Statistical prediction with special reference to the problem of tolerance limits, Ann. Math. Stat. 13 (4) (1942) 400-409. https://doi.org/10.1214/aoms/1177731537
  8. R. Macian-Juan, W. Tietsch, F. Sassen, Proposal for the Development and Implementation of an Uncertainty and Sensitivity Analysis Module in SNAP, US NRC NUREG/IA-0407, 2012.
  9. I. Hong, D. Oh, I. Kim, Generic Application of Wilks' Tolerance Limit Evaluation Approach to Nuclear Safety, 2013.
  10. I. Hong, A. Connolly, Generalized tolerance limit evaluation method to determine statistically meaningful minimum code simulations, in: 16th International Conference on Nuclear Engineering, American Society of Mechanical Engineers, 2008, pp. 653-660.
  11. L. Pal, M. Makai, Remarks on Statistical Aspects of Safety Analysis of Complex Systems, ArXiv Preprint Physics/0308086, 2002. https://doi.org/10.1016/S0951-8320(03)00022-X
  12. A. Guba, M. Makai, L. Pal, Statistical aspects of best estimate method - I, Reliab. Eng. Syst. Saf. 80 (3) (2003) 217-232. https://doi.org/10.1016/S0951-8320(03)00022-X
  13. W. Conover, Practical Nonparametric Statistics, third ed., John Wiley & Sons, Inc, 1999 third ed.
  14. C. Mesado, Uncertainty Quantification and Sensitivity Analysis for Cross Sections and Thermohydraulic Parameters in Lattice and Core Physics Codes. Methodology for Cross Section Library Generation and Application to PWR and BWR, Ph.D. thesis, Universitat Politecnica de Valencia, 2017, http://hdl.handle.net/10251/86167.
  15. M. Garciia-Fenoll, C. Mesado, T. Barrachina, R. Miro, G. Verdu, J.A. Bermejo, A. Lopez, A. Ortego, Validation of 3D neutronic-thermohydraulic coupled codes RELAP5/PARCSv2.7 and TRACEv5.0p3/PARCSv3.0 against a PWR control rod drop transient, J. Nucl. Sci. Technol. (2017), https://doi.org/10.1080/00223131.2017.1329035.
  16. C. Mesado, R. Miro, T. Barrachina, G. Verdu, Modeling 3D Cores for PWR Using Vessel Components in TRACE v5.0P3 (NUREG/IA-0460), Tech. Rep, Universitat Politecnica de Valencia (UPV), 2015.
  17. O. Rosello, Desarrollo de una metodologia de generacion de secciones eficaces para la simplificacion del nucleo de reactores de agua ligera y aplicacion en codigos acoplados neutronicos termohidraulicos, Ph.D. thesis, Universitat Politecnica de Valencia (UPV), 2004.
  18. US-NRC, et al., reportStandard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition - Transient and Accident Analysis, NUREG-0800.
  19. A. Petruzzi, F. D'Auria, Thermal-hydraulic System Codes in Nulcear Reactor Safety and Qualification Procedures, Science and Technology of Nuclear Installations.
  20. B. Boyack, R. Duffey, G. Wilson, P. Griffith, G. Lellouche, S. Levy, U. Rohatgi, W. Wulff, N. Zuber, Quantifying Reactor Safety Margins: Application of Code Scaling, Applicability, and Uncertainty Evaluation Methodology to a Large-Break, Loss-Of-Coolant Accident (NUREG/CR-5249), Tech. rep., Nuclear Regulatory Commission, Div. of Systems Research, Washington, DC (USA), 1989.
  21. T. Wickett, F. D'Auria, H. Glaeser, E. Chojnacki, C. Lage, D. Sweet, A. Neil, G. Galassi, S. Belsito, M. Ingegneri, et al., Report of the uncertainty method study, Tech. Rep. I (97) (1998) 35. OECD/CSNI Report NEA/CSNI/R.
  22. I. Gajev, Sensitivity and Uncertainty Analysis of Boiling Water Reactor Stability Simulations, Ph.D. thesis, 2012.