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Abstract 

Botnets have become one of the most significant threats to Internet-connected smartphones. 
A botnet is a combination of infected devices communicating through a command server 
under the control of botmaster for malicious purposes. Nowadays, the number and variety of 
botnets attacks have increased drastically, especially on the Android platform. Severe 
network disruptions through massive coordinated attacks result in large financial and ethical 
losses. The increase in the number of botnet attacks brings the challenges for detection of 
harmful software. This study proposes a smart framework for mobile botnet detection using 
static analysis. This technique combines permissions, activities, broadcast receivers, 
background services, API and uses the machine-learning algorithm to detect mobile botnets 
applications. The prototype was implemented and used to validate the performance, 
accuracy, and scalability of the proposed framework by evaluating 3000 android 
applications. The obtained results show the proposed framework obtained 98.20% accuracy 
with a low 0.1140 false-positive rate. 

 
Keywords: Android Botnets, Smart Framework, Static Analysis, Botnet Detection 
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1. Introduction 

In the recent era, explosive growth has been seen in the sale and adoption of smartphone 
devices. Gartner stated in their report that the sale of smartphones is increased by 87% 
worldwide in the fourth quarter of 2018 [1, 2]. In order to take a maximal benefit from the 
smartphones facilities, relevant software applications should be installed. Correspondingly, 
users have been downloading an increasingly large number of applications in response to 
advancements in smartphones [3]. The Android platform becomes the most popular with an 
estimated 4.839 million applications in the official Google’s Android market, having 
downloads in excess of 25 billion by November 2018 [4]. Meanwhile, the malicious software 
(malware) is on the top with the adding of 2.8 million samples to the end-users libraries [5]. 
The increased number of goodware applications also leads to a greater chance of installing 
malware to smartphones. It reflects the harmful intention of cybercriminals to create 
malware like adware, botnets, bugs, rootkits, spyware, Trojan horses, viruses and much more 
[67; 71; 75]. Among this malware, the botnets are quickly gaining the attention of 
researchers belonging to both academia and industry. The term “bot” is derived from the 
“robot” and “net” is derived from the “network” [6, 7]. A bot is a type of malware that runs 
automatically after installation in the victim device and get the full control of that device. It 
is not required for the malware program to manipulate by a remote command and control 
servers. Therefore, the major difference between botnet and malware is the unconditional 
control of a remote machine through the bot codes. The botnets can be a platform for a slave, 
provided by Internet-connected computers. In general, botnets can be classified into 
traditional and mobile ones [65]. In the case of the traditional botnets, computers provide the 
platform for the slave bots. However, in the mobile botnet, a mobile device provides the 
platform for the slaves. Furthermore, the mobile botnet can be generally classified as 
hypertext transfer protocol (HTTP) based, Internet relay chat (IRC) based, and peer to peer 
(P2P) based, according to the underlying C&C (Command and Control) communication 
protocol [8]. Unlike the traditional cybercrime, a mobile botnet can attack and propagate 
itself through various methods and may cause much greater losses to smartphones [9, 10].  

Once a smartphone is being infected, it can be converted to bot zombie [11, 12]. An 
infected smartphone can cause drastic threats to the end-users or the service-provider 
company. As far as researchers are aware, the first mobile botnet named SymbOS/Yxes 
appeared in 2009 [13]. The target of SymbOS/Yxes botnet was SYMBIAN OS by using a 
rudimentary HTTP-based C&C channel: both Trojanized game applications with bot-like 
capabilities that compromised mobile devices [14]. Since this study focuses on the Android 
OS, the terms “Android botnet” and “mobile botnet” will be used in the same meaning. In 
this case, the bots infect smartphones, personal digital devices (PDAs), smart watches, and 
tablets that have Android OS. These mobile botnets have the capability to steal sensitive 
information like phone numbers, International mobile equipment identity (IMEI), network 
operator details, international mobile subscriber identity (IMSI), voice mail numbers, 
location information and much more from the infected devices using the connection with 
command and control servers [15-19]. Phishing, SMS fraud, Spyware, Fake installation, 
Banking Trojans, and premium dialers are the most common threats of botnets.  

A mobile botnet has four basic components, such as botmaster, command and 
control (C&C) server, bots, and communication channel. The one, who owns the mobile 
botnet, known as botmaster. C&C server is the most important component of a mobile botnet. 
Most of these botnets use short messaging service (SMS), hypertext transfer protocol 
(HTTP), and HTTP & SMS together as a command and control server [20-22]. The C&C 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020                                 2593 

servers are responsible for sending and receiving commands from botmaster to the infected 
devices known as bots. Communication channel refers to the network through which these 
bots are connected in order to perform illegal activities. Fig. 1 shows the basic architecture 
of the mobile botnet.  
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Recently, there is a rapid growth seen in the mobile botnets to damage the 

performance of smartphones. At this time, NotCompatible.C is the most dangerous botnet 
(which belongs to AnServer bots) affected a huge amount of smartphones to access their 
services [23]. P2P communication architecture and various evasion approaches discriminate 
NotCompatible.C botnet from other mobile botnets. Similarly, TigerBot, Zeus Botnet, 
BMaster perform the attacks on smartphones for financial profit, identity theft, and stealing 
personal information [24]. The most significant feature of the Zeus botnet is the ability to 
perform malware activities in different operating systems. However, other mentioned botnets 
are built only for Android OS [25]. The Obad.a is another dangerous botnet, which uses 
SMS and HTTP for the distribution among the devices. In this case, the bots were infected 
by sending users a message with the text “MMS message has been delivered, download from 
www.otkroi.com” [26]. Similarly, the botmaster uses the attack vectors, such as SMS, MMS, 
or USB. Commonly, Bluetooth and Wi-Fi are used to spread the infected commands among 
the targeted devices [27]. Successful execution of an infected command on a targeted 
smartphone empowers a botmaster to access a victim device for the above-mentioned illegal 
activities. In addition, mobile botnets have extra features as compare to PC botnets, such as 
portability, 24/7 connectivity to the Internet, access to the most credential information, 
possibility of sending and receiving SMS and MMS, and dialling capabilities [28]. Therefore, 
botnets are expected to maintain their severe effects on mobile devices. 

The rapid growth of mobile botnet applications realizes the need to develop an 
efficacious solution for mobile botnet detection. This study proposes a new framework for 
mobile botnet detection using static feature extraction and analysis. In the static analysis, the 
applications are decompiled, making possible exploration of the suspicious features and code 
[38]. To effectively identify the most significant botnet features, a huge number of benign 
and botware applications were surveyed and machine-learning approach was employed. The 
main contribution of this paper is given below. 

Fig. 1. Mobile Botnet Basic Architecture 
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• This paper proposed a smart framework for botnet detection in Android devices 
using static feature extraction and analysis. 

• This study analysed a significant number of mobile botnet applications to 
identify the botnet C&C structure and their most relevant features. 

• By using the information gain (IG) and support values approach, the most 
prominent features were selected and then used for classification. A selected 
machine-learning approach was used to classify the botnet attributes.  

This paper is organized as follows: Section 2 provides an overview of related work; 
Section 3 describes the data collection process and the experimental study; Section 4 
explains the proposed framework in more detail. Experimental results and comparison with 
prior work are given in Section 5. Conclusion and the reference list finalize the study. 

2. Related Work 

Nowadays, mobile botnet detection becomes a crucial task. Different studies proposed a 
number of techniques for botnet applications detection and prevention [1, 18, 29-32, 73, 79]. 
For easy understanding, the existing detection techniques can be classified into two main 
categories, such as dynamic and static analyses [33, 34]. In the dynamic analysis technique, 
the applications are installed and run on a real device or on an emulator to observe the 
malicious behaviour of the malware [35]. In order to inspect the suspicious behaviour of 
applications sandboxes are used [36]. These are special security tools used to inspect and 
stop the illegal activities of malicious applications. Commercially available sandboxes 
provide sustainable analysis and logging facilities to observe a particular bot and to generate 
the report [37]. However, the generated data may not be focused on the pivotal activities of 
the bots. Bots can generate an overwhelming amount of information extensively calling 
particular functions observed by the sandbox.  

On the other hand, in the static analysis technique, the applications are decompiled 
to find the suspicious features and lines of code [38]. This technique has been used widely 
due to the fast processing approach as compared to the dynamic one. Permissions and API 
calls are the most commonly used features in static analysis. Permissions are the gateways to 
interact with system resources. Each Android application requests for specific permissions, 
including permission to access SMS and calling modules, internal and external memory etc. 
AndroidManifest.XML and meta-data contain these and other important features for all 
Android applications available from the Google Play store [39]. In static analysis, in order to 
extract these features, the APK files are decompiled without executing the applications itself. 

Yerima et al. [40] proposed a static analysis approach to detect Android malware by 
extracting the most important features, such as permissions, API calls from the 
AndroidManifest and Classes of Android applications. In order to extract these features, they 
used 1000 malicious and 1000 benign applications. The Bayesian Classifier was applied to 
perform the classification. The authors claimed that they achieved 92.1% accuracy by the 
consideration of 30 static features. However, this approach is incompetent to thoroughly 
scrutinize the Android applications code for suspicious behaviours. Canfora, et al. [41] 
claimed that the classification of malware families is not allowed in this approach. 

Another mobile botnet detection approach was proposed by Peiravian and Zhu [42]. 
The authors utilized API calls, permission, and the combination of features. In their study, 
permissions were categorized into two types, such as requested and required permissions. 
The 𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗,𝑖𝑖  is represented with 1, such as 𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 = 1  if the 𝑗𝑗𝑡𝑡ℎ  API call is made in the 
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application. Similarly, the required permission is represented by 1, such as 𝐴𝐴𝑖𝑖 = 1 . The third 
feature was obtained by the concatenating of these two features. In the experimental part of 
the study, there were 2510 samples including 1250 benign and 1260 malicious applications. 
The authors achieved 96.88% accuracy by selecting a high number of features. This study 
shows that the accuracy can be improved when the features are selected from both malware 
and benign applications. It also can be concluded that Bagging (an ensemble classification 
method) had the best performance in classifying the datasets.  

De-Droid is another mobile botnet detection approach proposed by Karim et al. [43]. 
The authors claimed that this is a lightweight approach focusing on static analysis. This 
approach considers the API calls and permissions to detect suspicious binaries. In this study, 
5064 malicious and 14865 benign applications were used to decode the API calls and 
permissions. Rashidi & Fung proposed a BotTracer, a clustering-based approach to detect 
bot users by the same master [44]. The key idea behind this technique is to collect the expert 
users’ responses to a permission request and recommend them to inexperienced users. The 
first step of BotTracer is the analysis of the common features of bot users resulting in the 
similarity graph. Then, a hierarchical clustering method employed to group the users based 
on the distance, defined using similarity. However, the proposed approaches are unable to 
detect zero-day attacks and to deeply scrutinize the applications for possible malicious 
behaviour. 

3. Data Collection and experimental study 
For the experiments, the clean (benign) and infected third-party mobile applications were 
used. Currently, there are various types of applications in the market, such as web tools, 
native applications, and widgets [18]. The web applications are those developed through 
HTML, JavaScript, and CSS, while the natives are developed with Android SDK. The 
widget applications are those which are displayed on the Android desktop. Moreover, 
experiments use benign applications of native nature. The samples were obtained from the 
Google Android market [39]. The VirusTotal Malware Intelligence Service allows the 
researchers to obtain samples from their databases [45]. Initially, 1865 applications were 
obtained and tested with the VirusTotal tool to confirm their cleanness. Finally, to avoid the 
duplication the Monte Carlo sampling method [66] was used giving in total 1330 benign 
applications, as shown in Table 1.  

 

Table 1. Number of Benign Applications for each category 

Category Number of Apps Category Number of Applications 
Education 120 Business 62 
Music 103 Maps 42 
Health and Fitness 94 Social 90 
Finance 112 Photography 52 
Medical 90 Puzzles 61 
News 115 Sports 79 
Shopping 117 Entertainment 122 
Wallpaper 38 Communication 33 

The Botnet applications, which also known as botware, are collected from the 
different open source repositories, such as DREBIN, ISCX Android Botnet Dataset, and 
Android Malware Genome Project [46-48]. The DREBIN dataset consists of 5560 
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applications from different 179 malware families, the ISCX dataset includes 1929 botnet 
samples, and the Android malware genome project consists of 1200 malware samples. To the 
best of our knowledge, these are the largest Android malware and botnet datasets, which 
include all the publicly available samples and open-source malware repositories. The same 
number of benign and botware applications are considered to facilitate machine-learning 
modelling. Table 2 shows the number of malware applications and the name of the 
corresponding malicious activities. Symbol  shows that the malware family can perform 
this activity, while the × shows that the malware cannot perform it. 
 

Table 2. Number of Samples for Botware Applications with Malicious Activities 
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AnserverBot 95         
Bmaster 6         
DroidDream 143         
Geinimi 126         
MisoSMS 92         
NickySpy 112         
Cot Compatible 72         
PJapps 118         
Pletor 80         
RootSmart 25         
Fjcon 42         
FakeInstaller 90         
Twikabot.A 90         
Saiva 92         
Sweaweth 82         
AndroRat.A 65         

4. Smart Framework for Android Botnet Detection 

This section demonstrates the proposed smart framework for mobile botnet detection, which 
is based on the static features extraction in Android devices (Fig. 2). The proposed 
framework has five layers of mobile security that can detect applications having the features 
of mobile botnets. These five layers of detection technique are the decompiler, extractor, 
smart learner, features refiner, and the machine learning module respectively. Using the 
framework, whenever a user completes the installation of an application, a popup window 
appears on the screen if the installed application contains an injected code from the third 
party (i.e. from a cyber-criminal). 
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Fig. 2. A Proposed Framework for Android Botnet Detection 
 

4.1. App Decompiler 
Decompiler is responsible for the translation of the machine code into the source code. The 
Android applications are distributed as a machine code that is called Android package file 
(APKs). In order to decompile the APK files, the Android asset packaging tool (AAPT) was 
used (available within the Android SDK [49]). Each APK file contains the 
AndroidManifest.xml and the classes.DEX files that are decoded to make them human-
readable. The AndroidManifest.xml describes an Android application and encloses the 
essential information about the APK file, such as permissions, activities, services, and intent-
filters. The same procedure was applied to decompile the classes.DEX files, which are the 
java source code. 
 

4.2. Feature Extractor 
This component performs reverse engineering of each decompiled application to extract 
static features from the AndroidManifest.xml and the classes.DEX files. Besides, tags to 
interact with the features inside and outside of the Android applications were extracted. For 
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example, <uses – permission> was employed to get the permissions for accessing hardware 
and other components of smartphones, while <uses – activities> was used to switch between 
different activities inside the application. Permission tags can only interact with the 
smartphones when a user grants permissions to the applications during the installation or 
later on. However, not all requested permissions may be used by the application. E.g. <uses – 
features> is required to interact with other components of the application, while some of the 
features may not be used.  

In order to extract these features from an Android application, the Androguard open-
source tool was used [50]. After extraction of required features, for each Android application, 
a CSV file was generated for further processing. The static features, namely, permissions, 
activities, broadcast receivers, services, and API calls, were extracted from the 
AndroidManifest.XML and the classes.DEX files. In order, to automatically perform 
extraction of the features a Python script was applied to all Android applications. Let l and m 
be correspondingly the number of Android applications and the set of features including 
permissions, activities, broadcast receivers, services, and API calls. The features vector for 
the application i is �𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2,𝑋𝑋𝑖𝑖,3, … … ,𝑋𝑋𝑖𝑖,𝑛𝑛� where: 
 

𝐹𝐹(𝑖𝑖, 𝑗𝑗) = �        1              𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑡𝑡𝑖𝑖𝑎𝑎𝑎𝑎 𝑎𝑎 𝑢𝑢𝑢𝑢𝑒𝑒𝑢𝑢 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑒𝑒𝑎𝑎𝑡𝑡𝑢𝑢𝑓𝑓𝑒𝑒 𝑘𝑘
0             𝑂𝑂𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖𝑢𝑢𝑒𝑒                                                 

                       (1) 

Similarly, suppose an instance of the class in the generated dataset is Fi ∈ {Botware, 
Benign}, where i shows the class of application [51]. Features of each extracted application 
were saved in the CSV file for further analysis (Fig. 3). The file begins with the hash 
function of the application and ends with the sum of all the enabled features. The hash value 
represents the MD5 values of the Android applications, while the values “1” and “0” 
correspond to enabled and disabled features, respectively. The sum of the enabled values was 
utilized for further analysis. In general, the analysis shows that the applications that were 
using more features had a higher probability to have a botware intention. 

 

Fig. 3. Example of the CSV file of Extracted Application 

Fig. 4 shows the frequencies of the permissions requests and API calls feature. The 
figure demonstrates that the number of the used by botware applications API calls and 
requested permissions is higher as compared to the benign applications. At the same time, 
requesting more features did not mean that the botware developers would be able to use all 
these features. The logic behind requesting a large number of features is that malware 
developers are trying to evade detection by calling these features indirectly through the code 
of another program. This strategy can certainly hinder the detection of malware codes.  

Fig. 4(a) illustrates the number of requested and used permissions by botware and 
benign applications. The botware features range from 18.570 % to 97.860 % while from 
1.430% to 51.430% for benign applications. The average percent of requested permissions of 
botware is 54.249% and 11.323% for benign applications. This enormous difference shows 

(00DA00BA346A4B1AB452651A003A0BA37A463E4A4BAB452651A),<1,1,1,0,1,1,
0,0,1,0,1,0,1,1,1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,1,1,0,1,1,0,
0,1,0,1,0,1,1,1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,11,1,1,0,1,1,0,0,
1,0,1,0,1,1,1,1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,1,1,0,1,1,1>,(80)
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that botware applications request a much bigger number of permissions features as compared 
to benign applications. For instance, one of the common features of botware and benign 
applications is the INTERNET permission as shown in Fig. 4(a). Here, the requests 
generated by botware applications was 97.86%, while 51.43% for benign applications. It 
shows that botware applications are usually generating more requests as compared to benign 
applications. Therefore, the smartphones users should be aware of the botware’s susceptible 
permissions requests during the installation of an Android application. The comparison of 
benign and botware applications with respect to API calls is given in Fig. 4(b). The obtained 
results show that botware applications use more API calls as compared to benign 
applications. At the same time, almost the same usage ratio can be seen for the services and 
the broadcast receivers.  

 

  
 

(a)  Permissions                                (b) API Calls 
Fig. 4. The number of requested permissions and activities 

of botware and benign applications 
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begins by pinpointing the individual repeated items in the Bbot dataset and extending them to 
substantial sets as much as that item sufficiently often appears. For example, 𝐴𝐴 =
{𝐴𝐴1,𝐴𝐴1,𝐵𝐵1, 𝑆𝑆1,𝐴𝐴𝐴𝐴1} is a candidate item set. There are two values need to be known in 
advance for the Apriori algorithm, which are the support and the confidence levels, for the 
calculation of the frequency of features, used in the Bbot dataset. In this case, the support 
value of the candidate itemset {𝐴𝐴1,𝐴𝐴1,𝐵𝐵1,𝑆𝑆1,𝐴𝐴𝐴𝐴1} was computed by formula (2).  

𝑆𝑆𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑡𝑡 (𝐴𝐴1,𝐴𝐴1,𝐵𝐵1, 𝑆𝑆1,𝐴𝐴𝐴𝐴1) = Number of applications that contains 𝑃𝑃1,𝐴𝐴1,𝐵𝐵1,𝑆𝑆1,𝐴𝐴𝑃𝑃1 in 𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏
𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝑙𝑙 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑖𝑖𝐴𝐴𝑇𝑇𝑡𝑡𝑖𝑖𝑇𝑇𝑛𝑛𝐴𝐴 𝑖𝑖𝑛𝑛 𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏

 (2) 

The candidate item set is considered as a frequent itemset or a relevant pattern, only 
if 𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑡𝑡 (𝐴𝐴1,𝐴𝐴1,𝐵𝐵1, 𝑆𝑆1,𝐴𝐴𝐴𝐴1)  ≥  threshold (t), where 𝑡𝑡 is a user-defined threshold. In 
this study, we set 0.5 as a minimum threshold [54]. The same process was applied for 
frequent itemset identification for benign applications. Table 3 shows the identified unique 
patterns for botware applications. The pattern ID represents the indexed ID of used features 
pattern, while the support values are calculated for each used feature pattern (UP). 

The support values in Table 3 show that the botware applications mostly utilize the 
combination of the features, such as the INTERNET, RECEIVE_SMS, 
WRITE_EXTERNAL_STORAGE, com.clientsoftware.ServiceStartr, 
com.phone.callcorexy.x-y.SReceiver, and SYSTEM_A-LERT_WINDOW to perform the 
malicious activities on the smartphone and to steal a piece of sensitive information from it. 
Once this mentioned malicious activity is performed, it sends the stolen information to the 
C&C server through the communication channel. In this malicious activity, INTERNET 
permission provides the connection between smartphone and C&C server, while the 
RECEIVE_SMS permission received the updates and commands about the activity. Botware 
applications having the INTERNET, WRITE_SMS and SEND_SMS permissions enable can 
send SMS and MMS to premium numbers with the combination of MAIN ACTIVITY and 
TOUCHSCREEN. It is reported that sending of SMS and MMS to the premium numbers can 
cause financial losses [31]. 

Furthermore, the location related to permissions, such as 
ACCESS_COARS_LOCATION and ACCESS_FINE_LOCATION is used for the 
smartphone data collection and network location data gathering. The pattern UP29 is the 
combination of INTERNET, ACCESS_NETWORK_STATE, com.google.android.mms.-
LiveReceiver and com.clie-ntsoftware.SDCardServiceSt-arter is used to handle the 
connection between bots and botnets. 

Table 3. Unique Patterns for the Botware and Benign used Features 

Used 
Pattern 

Botware Benign Used 
Pattern 

Botware Benign Used 
Pattern 

Botware Benign 

UP1 0.9731 0.0269 UP15 0.7349 0 UP29 0.6269 0.005 
UP2 0.9374 0.1059 UP16 0.722 0 UP30 0.6254 0 
UP3 0.9151 0.0773 UP17 0.7214 0 UP31 0.6235 0.0556 
UP4 0.9045 0.137 UP18 0.7202 0.0216 UP32 0.6229 0.0235 
UP5 0.9009 0.1831 UP19 0.7178 0.1945 UP33 0.6216 0 
UP6 0.8856 0 UP20 0.7173 0.0731 UP34 0.605 0 
UP7 0.8806 0.1059 UP21 0.7089 0 UP35 0.6014 0 
UP8 0.7949 0.0731 UP22 0.7015 0.0556 UP36 0.5945 0.1718 
UP9 0.7867 0.1363 UP23 0.6974 0 UP37 0.5831 0.0269 
UP10 0.7796 0.0235 UP24 0.6828 0.0773 UP38 0.5565 0 
UP11 0.7774 0.1831 UP25 0.6773 0 UP39 0.5363 0.1363 
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UP12 0.7758 0.2055 UP26 0.6731 0.1945 UP40 0.5338 0.1718 
UP13 0.7712 0.1831 UP27 0.6544 0 UP41 0.5059 0 
UP14 0.7705 0.0216 UP28 0.6534 0 UP42 0.5000 0 

4.4. Features Refiner 
This component takes input from the smart learner and use it to achieve high accuracy in a 
specified model of the problem domain. In the feature’s extraction process, many features 
are irrelevant and redundant. Such redundant features may create an issue for the learning 
algorithm, which includes misleading, overfitting, reducing accuracy and generality, time 
and space complexity [55]. It may increase the crucial effects since mobile devices have 
limited resources [56]. Selecting the most appropriate features to form a large feature vector 
space can significantly change the accuracy of the predicted model. In order to increase the 
efficiency and accuracy of botnet detection, it is important to implement an effective feature 
refining process. The basic idea of feature refining is to select the most related to botware 
applications features.  

For this purpose, the information gain (IG) algorithm was applied to the malicious 
dataset [57]. It is the most common feature selection method in botware detection techniques 
[58]. While most of the methods followed the feature ranking approach based on specific 
metrics, the value was computed to score each feature individually. According to this 
measure, a feature Y is regarded as a better indicator than a feature Z for a class X, 
if 𝐴𝐴𝐼𝐼(𝑋𝑋|𝑌𝑌) > 𝐴𝐴𝐼𝐼(𝑋𝑋|𝑍𝑍). Approach ranks the features by the information gained and select the 
high ranked features. For the computing of information gain value, WEKA is used [52]. The 
Android applications are inspected manually, and then the permission, activities, broadcast 
receivers, services, and API_Calls are noted. All these features have a specific relationship 
with respect to botnet activities. 

4.5. Machine Learning Modelling 
This component takes input data from the smart learner component. Once the features are 
refined, the next stage is to train the machine learning classifier. In anomaly detection, 
various machine-learning techniques can be used to train a model and test the datasets [60; 
68; 80]. Since the dataset used in this research study is labelled and has two target 
classes - Benign and Botware, supervised learning technique was selected. In supervised 
learning, the algorithm uses a labelled dataset, which provides a possibility to evaluate the 
accuracy of the model on training data. This why a supervised learning technique is 
generally more accurate and reliable as compare to unsupervised learning. In this study, the 
selecting classifier is based on the performance, a number of classes and the ranking criteria 
of features. Since the prototype of the framework was implemented in Java, WEKA, which 
is a data mining software also written in Java [52, 53], was used. 

During the classification phase, several machine-learning algorithms were selected 
to recognize botware applications based on classification accuracy. Choosing an appropriate 
classifier ultimately demonstrates the accuracy of the detection framework. To choose a 
proper machine-learning algorithm for classification, the following requirements were 
considered: (1) diversity (the number of static features were taken from the multiple 
domains); (2) sparse feature set (the supreme features set were finally selected for the 
framework evaluation); (3) scalability (the system should be able to deal with future 
requirements of users); and (4) performance (algorithms for testing and training should 
provide a prompt response to a user). Given these considerations, support vector machine 
(SVM), Random Forest, J-48, simple logistic regression (SLR), and Naïve Bayes were 
selected as the classification algorithms to establish and test the proposed framework.  
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5. Experimental Results 
This section discusses the obtained results for individual and combined features.  

5.1. Performance Evaluation Parameters 
This section describes the evaluating process of the proposed botnet detection framework. 
The performance has been evaluated using five matrices, namely True Positive Rate (TPR), 
False Positive Rate (FPR), Precision, F-measure, and Accuracy, and next compared to the 
existing state-of-the-art detection techniques. Literature review shows that these parameters 
are commonly used for the evaluation of the malware detection frameworks and tools. Table 
4 shows the evaluation parameters with the description and the corresponding formulas.  

Table 4. Performance Evaluation Parameters of the Proposed Framework 

Parameters Description Formula 
True Positive Rate (TPR) When it is actually Botware, how often it 

predicted as Botware 
𝑇𝑇𝐴𝐴𝑇𝑇 = 𝑇𝑇𝐴𝐴/(𝑇𝑇𝐴𝐴 + 𝐹𝐹𝐹𝐹) 

False Positive Rate (FPR) When it is actually Botware, how often it 
predicted as Benign 

𝐹𝐹𝐴𝐴𝑇𝑇 = 𝐹𝐹𝐴𝐴/(𝐹𝐹𝐴𝐴 + 𝑇𝑇𝐹𝐹) 

Accuracy (ACC) The number of occurrences, correctly 
classified 𝐴𝐴𝐴𝐴𝐴𝐴 =

(𝑇𝑇𝐴𝐴 + 𝑇𝑇𝐹𝐹)
(𝑇𝑇𝐴𝐴 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐴𝐴 + 𝐹𝐹𝐹𝐹) 

F-Measure (F) A measure that combines precision (P) and 
recall (R) is the harmonic mean of precision 
and recall 

𝐹𝐹 −𝑀𝑀𝑒𝑒𝑎𝑎𝑢𝑢𝑢𝑢𝑓𝑓𝑒𝑒 = 2(
𝐴𝐴 ∗ 𝑇𝑇
𝐴𝐴 + 𝑇𝑇) 

Positive Predictive Value 
(PPV), Precision 

The ratio of predicted positives, which are 
actually positive 𝐴𝐴𝐴𝐴𝑃𝑃 =

𝑇𝑇𝐴𝐴
𝑇𝑇𝐴𝐴 + 𝐹𝐹𝐴𝐴 

5.2. Results 
First, the experiments were conducted separately on the permissions, the activities, the 
broadcast receivers, the services, and the API_calls features. These features were next united 
to conduct experiments on the combined features set. The obtained results are summarized in 
Table 5. In general, random forest obtained higher accuracy rate for all selected features as 
compared to other classifiers (except the services feature). Considering only the accuracy of 
evaluation, the random forest was found the best classifier. TPR, FPR, precision, and F-
measure were used to evaluate the proposed framework and to obtain more accurate results. 
The experiments were performed on all selected classifiers by considering the mentioned 
parameters. 

Once researchers obtained the results for all selected features by considering 
different classifiers, they combined the features to perform further experiments. Table 6 
summarizes the obtained results. Random forest achieved the highest accuracy 98.2%, while 
TPR is 0.7880, precision is 0.8893 and FPR is 0.1140. However, experiments produce a low 
F-measure of 0.7457. Table 6 shows that the random forest achieved more accurate results 
by considering the combined features. 
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Table 5. Results, obtained by considering separate features 

Features Algorithms TPR FPR Precision F-Measure Accuracy 

Permissions 

Random Forest 0.9114 0.0626 0.9127 0.9358 93.4000 
Naïve Bayes 0.8802 0.0803 0.9016 0.9110 91.1200 
SVM 0.8912 0.1118 0.8555 0.8832 87.0300 
SLR 0.9000 0.1100 0.8443 0.7633 86.9300 
J-48 0.9011 0.0100 0.9123 0.9128 90.6400 

Activities 

Random Forest 0.7927 0.1673 0.8814 0.7997 81.9300 
Naïve Bayes 0.7250 0.1772 0.8809 0.7499 66.0200 
SVM 0.7918 0.1138 0.7598 0.7634 79.9100 
SLR 0.7111 0.1889 0.7741 0.7259 77.1800 
J-48 0.7674 0.1326 0.8684 0.7912 80.7100 

Broadcast 
Receivers 

Random Forest 0.8567 0.0816 0.8940 0.8602 86.6800 
Naïve Bayes 0.6600 0.3267 0.7960 0.5250 81.0200 
SVM 0.8180 0.0882 0.7932 0.8461 81.8000 
SLR 0.6667 0.2700 0.6360 0.6250 83.0200 
J-48 0.7923 0.1069 0.8714 0.7971 85.2300 

Services 

Random Forest 0.7150 0.0519 0.8632 0.7517 73.8600 
Naïve Bayes 0.6753 0.5820 0.5780 0.7281 68.1800 
SVM 0.7319 0.1272 0.8503 0.7359 74.4800 
SLR 0.7142 0.1452 0.8461 0.6800 66.1800 
J-48 0.6620 0.2662 0.6380 0.6470 71.4200 

API_Calls 

Random Forest 0.7580 0.1840 0.8393 0.7457 78.2600 
Naïve Bayes 0.7550 0.1850 0.8270 0.7330 74.5700 
SVM 0.7630 0.2400 0.8410 0.7510 76.2900 
SLR 0.7533 0.1441 0.8237 0.7224 73.5400 
J-48 0.7377 0.1288 0.8348 0.7402 75.3300 

 
Table 6. Results, obtained by considering combined features 

Algorithms TPR FPR Precision F-Measure Accuracy 
Random Forest 0.7880 0.1140 0.8893 0.7457 98.2000 
Naïve Bayes 0.7550 0.1850 0.8270 0.7330 92.5700 
SVM 0.7630 0.2400 0.8410 0.7510 88.2900 
SLR 0.7533 0.1441 0.8237 0.7224 83.5400 
J-48 0.7377 0.1288 0.8348 0.7402 84.3300 

5.3. Comparison with prior work 
The need for new botnet detection techniques is a crucial security requirement of Android 
devices. The proposed framework is an effective and efficient botnet detection approach for 
Android devices. The proposed framework has high accuracy with the obtained value of 
98.20%, compared to Rashidi & Fung (2016), obtained 89.30% by utilizing the permissions 
feature. Sanz et al. (2013), obtained 94.83% accuracy by using the permissions and 
API_Calls features as shown in Table 7. The accuracy obtained by Yerima et al., (2014) was 
92.10 % and Peiravian & Zhu (2013) showed the accuracy score of 96%. Overall, the 
proposed framework is more accurate when compared with Rashidi & Fung, (2016), Sanz et 
al., (2013), Yerima et al., (2014) and Peiravian & Zhu, (2013). The main reason for the better 
results of the proposed framework is adding the refining component and use of the features 
selection approach. With using of refining component, the proposed framework ignored the 
features, which are not vulnerable to Android botnets attacks. 
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Table 7. Comparison with Existing Techniques 

References Approach Platform Features Accuracy 
[18] Static Android Permissions & API_Calls 94.83% 
[42] Static Android Permissions & API_Calls 96% 
[59] Static Android Permissions 92.10% 

[44] Static Android Permissions 89.30% 
Proposed 

Framework Static Android Permissions, Activities, Broadcast 
Receivers, Services & API_Calls 98.20% 

Fig. 5 shows the accuracy represented by a bar graph. It depicted that the proposed 
framework has high accuracy as compared to other considered studies.  

Fig. 5. Comparison of accuracy of the proposed framework with existing solutions 

The study [18] proposed to discover malicious applications by using the difference 
in the Android application permissions that the application request upon installation. 
Android permissions are coarse-grained [60]. For example, the INTERNET permission does 
not have the capability to restrict access to a particular Uniform Resource Locator (URL). 
READ_PHONE_STATE allows an app to identify whether the device rings or is on hold. At 
the same time, it also allows the app to read sensitive information, such as device identifiers. 
Permissions, as WRITE_SETTINGS, CAMERA are broadly defined, violating the least 
privilege access principle. Access to WRITE_CONTACTS or WRITE_SMS does not imply 
access to READ_CONTACTS or READ_SMS permissions [49]. Thus, permissions are not 
hierarchical, and a developer must separately request them. In addition, at the installation 
time, a user is forced to either grant all permissions or deny the application installation. 
Hence, the dangerous permissions cannot be avoided at the installation time. Moreover, the 
users cannot differentiate between the necessity and its misuse, which may expose 
exploitation.  

In approach [61], authors extracted static features from the androidmanifest.xml file of 
666 Android applications. They used machine-learning techniques, such as K-Nearest 
Neighbors (K-NN), Decision Trees, Bayesian networks, Support Vector Machines (SVM) to 
detect malicious applications. K-NN was used due to its simplicity in classifying instances 
into different classes; at the same time, a decision tree allowed an easy implementation. The 
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Bayesian network was employed for determining the probability of a hypothesis certainty. 
On the long run, SVM was used to solve the problem of kernel functions, which may lead 
the technique to the non-linear classification surface [62].  

The study [42] developed a machine-learning framework to analyze benign and 
malicious applications by using the permissions and API calls as the features. In their study, 
authors examined in total 2400 Android malware and benign applications to extract the 
requested permissions and API calls. Authors achieved 96.88% of accuracy by selecting a 
high number of features. This approach shows that the accuracy can be improved when the 
number of features is selected from both malware and benign applications. Extracting and 
selecting a bigger number of features allow to improve the accuracy, while the memory and 
time use are increased [60]. This framework was specifically focused on malware 
applications. However, using these approaches mobile botnets cannot be detected in Android 
devices. This study has almost the same nature as an aforementioned study on MAMA [18], 
which use the same features. Researchers achieved 94.83% accuracy when 130 features were 
examined. 

Yerima et al. (2014) developed a proactive machine-learning approach based on 
Bayesian classification and aimed to detect zero-day Android malware attacks using static 
analysis approach [59]. This approach has three main components, which are decompression, 
identification, and classification. First, an application is decompiled by reverse engineering 
by using Dalvik VM to extract features from the AndroidManifest.xml and .DEX classes 
[63]. All extracted features are stored in a file with the .csv extension for further analysis. In 
the identification step, this component converts the extracted features file to a readable form 
for further analysis. In the classification process, the Bayesian algorithm classifies the 
malware and benign applications as a result [52]. This approach was based on the large 
existing set of malware of 49 families. Specifically, this technique achieved approximately 
92.1% accuracy by using a set of 30 static features.  

Karim et al. (2015) research work focused on Android malware identification only. By 
using their approach, a mobile botnet cannot be detected. Authors used a few numbers of 
features as compared to the study [42], which significantly affects the accuracy of malware 
detection. According to the study [64], the time is taken for features extraction and 
computation is decreased to 77%. However, another study showed that by using these 
features the time taken for features extraction is increased at 28% [64]. Thus accuracy and 
time consumption are the main issues need to be addressed. 

BotTracer [44] is a clustering-based method to detect bot users controlled by the same 
masters. The main method of the proposed method is to plot the Android users in various 
groups based on their similarity. It is an Android permissions recommendation framework, 
which allows users to grant application permissions requests in a fine-grained manner. In 
Android applications, permissions are the main factor during installation that cannot be 
ignored. For example, the INTERNET permission does not have the capability to restrict 
access to a particular Uniform Resource Locator (URL), READ_PHONE_STATE allows an 
app to identify whether the device rings or is on hold [65]. 

The key idea behind BotTracer technique [44] is to collect the expert users’ responses 
to a permission request and recommend them to inexperienced users. BotTracer uses two 
phases with the first analysis of the common features of the bot users for the construction of 
a similarity graph. Then, a hierarchical clustering method groups those users based on the 
distance, which is defined using similarity. This approach has many limitations in terms of 
botnet detection. First, it detects the simulated bot from user profiles only. Secondly, it 
considers the DEX bytecode, while it ignores the native code and app resources. Thirdly, the 
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opcode sequence does not include high-level semantic information and hence generates false 
negatives. With these limitations, the smart adversary can easily bypass this technique using 
code transformation, such as inserting junk bytecode, restructure methods, and alter control 
flow to evade the BotTracer prototype.  

6. Conclusion and Future Work 
Botnets have become one of the most significant threats to Internet-connected smartphones. 
An increasing number of botnet attacks brings challenges for the detection of harmful 
software. To contribute to this domain, this study proposes a new botnet detection 
framework using static feature extraction and machine learning algorithms. In order to 
identify the C&C structure and the most relevant features, a considerable number of botnet 
applications were analyzed. The static features, such as permissions, activities, broadcast 
receivers, services, and API calls were extracted and further analysed. The extraction of the 
features, the used patterns and the feature refining component differentiate the proposed 
technique from others. By using the information gain and the Apriori algorithms, the most 
prominent features were identified that gives the possibility to classify an Android 
application as a mobile botnet and to prevent an attack. The selected features were used in 
the machine-learning algorithm for classification, which achieved 98.2% accuracy with very 
low FPR (0.1140). Among the different classifiers used, the random forest gave the best 
results. The obtained results show that the proposed framework accurately identifies botnet 
applications. The limitation of the proposed approach is that it is based on static features; the 
accuracy of prediction can be improved by expanding the functionality by dynamic 
properties. It will be a direction of our future work. 
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