
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, Jun. 2020 2591
Copyright ⓒ 2020 KSII

http://doi.org/10.3837/tiis.2020.06.015 ISSN : 1976-7277

A Smart Framework for Mobile Botnet
Detection Using Static Analysis

Shahid Anwar1, Mohamad Fadli Zolkipli2, Vitaliy Mezhuyev3,*, Zakira Inayat4
1 Department of Software Engineering, The University of Lahore | 1-Km, Defence Road

Bhobatian Chowk, Lahore, Pakistan.
[e-mail: shahidanwar.safi@gmail.com]

2 Faculty of Computing, College of Computing and Applied Sciences, Universiti Malaysia Pahang, Lebuhraya
Tun Razak Gambang, 26300 Kuantan, Malaysia

[e-mail: fadli@ump.edu.my]
3 FH JOANNEUM University of Applied Sciences, Institute of Industrial Management

Werk-VI-Straße 46, 8605 Kapfenberg, Austria
[e-mail: vitaliy.mezhuyev@fh-joanneum.at]

4 Department of Computer Science, University of Engineering and Technology,
Peshawar 2500, Pakistan

[e-mail: zakirainayat@uetpeshawar.edu.pk]
*Corresponding author: Vitaliy Mezhuyev

Received May 12, 2019; revised November 11, 2019; accepted March 18, 2020;

published June 30, 2020

Abstract

Botnets have become one of the most significant threats to Internet-connected smartphones.
A botnet is a combination of infected devices communicating through a command server
under the control of botmaster for malicious purposes. Nowadays, the number and variety of
botnets attacks have increased drastically, especially on the Android platform. Severe
network disruptions through massive coordinated attacks result in large financial and ethical
losses. The increase in the number of botnet attacks brings the challenges for detection of
harmful software. This study proposes a smart framework for mobile botnet detection using
static analysis. This technique combines permissions, activities, broadcast receivers,
background services, API and uses the machine-learning algorithm to detect mobile botnets
applications. The prototype was implemented and used to validate the performance,
accuracy, and scalability of the proposed framework by evaluating 3000 android
applications. The obtained results show the proposed framework obtained 98.20% accuracy
with a low 0.1140 false-positive rate.

Keywords: Android Botnets, Smart Framework, Static Analysis, Botnet Detection
Technique

2592 Anwar et al.: A Smart Framework for Mobile Botnet Detection Using Static Analysis

1. Introduction

In the recent era, explosive growth has been seen in the sale and adoption of smartphone
devices. Gartner stated in their report that the sale of smartphones is increased by 87%
worldwide in the fourth quarter of 2018 [1, 2]. In order to take a maximal benefit from the
smartphones facilities, relevant software applications should be installed. Correspondingly,
users have been downloading an increasingly large number of applications in response to
advancements in smartphones [3]. The Android platform becomes the most popular with an
estimated 4.839 million applications in the official Google’s Android market, having
downloads in excess of 25 billion by November 2018 [4]. Meanwhile, the malicious software
(malware) is on the top with the adding of 2.8 million samples to the end-users libraries [5].
The increased number of goodware applications also leads to a greater chance of installing
malware to smartphones. It reflects the harmful intention of cybercriminals to create
malware like adware, botnets, bugs, rootkits, spyware, Trojan horses, viruses and much more
[67; 71; 75]. Among this malware, the botnets are quickly gaining the attention of
researchers belonging to both academia and industry. The term “bot” is derived from the
“robot” and “net” is derived from the “network” [6, 7]. A bot is a type of malware that runs
automatically after installation in the victim device and get the full control of that device. It
is not required for the malware program to manipulate by a remote command and control
servers. Therefore, the major difference between botnet and malware is the unconditional
control of a remote machine through the bot codes. The botnets can be a platform for a slave,
provided by Internet-connected computers. In general, botnets can be classified into
traditional and mobile ones [65]. In the case of the traditional botnets, computers provide the
platform for the slave bots. However, in the mobile botnet, a mobile device provides the
platform for the slaves. Furthermore, the mobile botnet can be generally classified as
hypertext transfer protocol (HTTP) based, Internet relay chat (IRC) based, and peer to peer
(P2P) based, according to the underlying C&C (Command and Control) communication
protocol [8]. Unlike the traditional cybercrime, a mobile botnet can attack and propagate
itself through various methods and may cause much greater losses to smartphones [9, 10].

Once a smartphone is being infected, it can be converted to bot zombie [11, 12]. An
infected smartphone can cause drastic threats to the end-users or the service-provider
company. As far as researchers are aware, the first mobile botnet named SymbOS/Yxes
appeared in 2009 [13]. The target of SymbOS/Yxes botnet was SYMBIAN OS by using a
rudimentary HTTP-based C&C channel: both Trojanized game applications with bot-like
capabilities that compromised mobile devices [14]. Since this study focuses on the Android
OS, the terms “Android botnet” and “mobile botnet” will be used in the same meaning. In
this case, the bots infect smartphones, personal digital devices (PDAs), smart watches, and
tablets that have Android OS. These mobile botnets have the capability to steal sensitive
information like phone numbers, International mobile equipment identity (IMEI), network
operator details, international mobile subscriber identity (IMSI), voice mail numbers,
location information and much more from the infected devices using the connection with
command and control servers [15-19]. Phishing, SMS fraud, Spyware, Fake installation,
Banking Trojans, and premium dialers are the most common threats of botnets.

A mobile botnet has four basic components, such as botmaster, command and
control (C&C) server, bots, and communication channel. The one, who owns the mobile
botnet, known as botmaster. C&C server is the most important component of a mobile botnet.
Most of these botnets use short messaging service (SMS), hypertext transfer protocol
(HTTP), and HTTP & SMS together as a command and control server [20-22]. The C&C

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2593

servers are responsible for sending and receiving commands from botmaster to the infected
devices known as bots. Communication channel refers to the network through which these
bots are connected in order to perform illegal activities. Fig. 1 shows the basic architecture
of the mobile botnet.

Botmaster

Malicious Activities

Phishing

Click
 Fraud

Spamming

Credential
Stealing

Infect New
Devices

DDoS
Attacks

Bitcoins
Fraud

Sniffing
Traffic

Bots

Targets

Recently, there is a rapid growth seen in the mobile botnets to damage the

performance of smartphones. At this time, NotCompatible.C is the most dangerous botnet
(which belongs to AnServer bots) affected a huge amount of smartphones to access their
services [23]. P2P communication architecture and various evasion approaches discriminate
NotCompatible.C botnet from other mobile botnets. Similarly, TigerBot, Zeus Botnet,
BMaster perform the attacks on smartphones for financial profit, identity theft, and stealing
personal information [24]. The most significant feature of the Zeus botnet is the ability to
perform malware activities in different operating systems. However, other mentioned botnets
are built only for Android OS [25]. The Obad.a is another dangerous botnet, which uses
SMS and HTTP for the distribution among the devices. In this case, the bots were infected
by sending users a message with the text “MMS message has been delivered, download from
www.otkroi.com” [26]. Similarly, the botmaster uses the attack vectors, such as SMS, MMS,
or USB. Commonly, Bluetooth and Wi-Fi are used to spread the infected commands among
the targeted devices [27]. Successful execution of an infected command on a targeted
smartphone empowers a botmaster to access a victim device for the above-mentioned illegal
activities. In addition, mobile botnets have extra features as compare to PC botnets, such as
portability, 24/7 connectivity to the Internet, access to the most credential information,
possibility of sending and receiving SMS and MMS, and dialling capabilities [28]. Therefore,
botnets are expected to maintain their severe effects on mobile devices.

The rapid growth of mobile botnet applications realizes the need to develop an
efficacious solution for mobile botnet detection. This study proposes a new framework for
mobile botnet detection using static feature extraction and analysis. In the static analysis, the
applications are decompiled, making possible exploration of the suspicious features and code
[38]. To effectively identify the most significant botnet features, a huge number of benign
and botware applications were surveyed and machine-learning approach was employed. The
main contribution of this paper is given below.

Fig. 1. Mobile Botnet Basic Architecture

2594 Anwar et al.: A Smart Framework for Mobile Botnet Detection Using Static Analysis

• This paper proposed a smart framework for botnet detection in Android devices
using static feature extraction and analysis.

• This study analysed a significant number of mobile botnet applications to
identify the botnet C&C structure and their most relevant features.

• By using the information gain (IG) and support values approach, the most
prominent features were selected and then used for classification. A selected
machine-learning approach was used to classify the botnet attributes.

This paper is organized as follows: Section 2 provides an overview of related work;
Section 3 describes the data collection process and the experimental study; Section 4
explains the proposed framework in more detail. Experimental results and comparison with
prior work are given in Section 5. Conclusion and the reference list finalize the study.

2. Related Work

Nowadays, mobile botnet detection becomes a crucial task. Different studies proposed a
number of techniques for botnet applications detection and prevention [1, 18, 29-32, 73, 79].
For easy understanding, the existing detection techniques can be classified into two main
categories, such as dynamic and static analyses [33, 34]. In the dynamic analysis technique,
the applications are installed and run on a real device or on an emulator to observe the
malicious behaviour of the malware [35]. In order to inspect the suspicious behaviour of
applications sandboxes are used [36]. These are special security tools used to inspect and
stop the illegal activities of malicious applications. Commercially available sandboxes
provide sustainable analysis and logging facilities to observe a particular bot and to generate
the report [37]. However, the generated data may not be focused on the pivotal activities of
the bots. Bots can generate an overwhelming amount of information extensively calling
particular functions observed by the sandbox.

On the other hand, in the static analysis technique, the applications are decompiled
to find the suspicious features and lines of code [38]. This technique has been used widely
due to the fast processing approach as compared to the dynamic one. Permissions and API
calls are the most commonly used features in static analysis. Permissions are the gateways to
interact with system resources. Each Android application requests for specific permissions,
including permission to access SMS and calling modules, internal and external memory etc.
AndroidManifest.XML and meta-data contain these and other important features for all
Android applications available from the Google Play store [39]. In static analysis, in order to
extract these features, the APK files are decompiled without executing the applications itself.

Yerima et al. [40] proposed a static analysis approach to detect Android malware by
extracting the most important features, such as permissions, API calls from the
AndroidManifest and Classes of Android applications. In order to extract these features, they
used 1000 malicious and 1000 benign applications. The Bayesian Classifier was applied to
perform the classification. The authors claimed that they achieved 92.1% accuracy by the
consideration of 30 static features. However, this approach is incompetent to thoroughly
scrutinize the Android applications code for suspicious behaviours. Canfora, et al. [41]
claimed that the classification of malware families is not allowed in this approach.

Another mobile botnet detection approach was proposed by Peiravian and Zhu [42].
The authors utilized API calls, permission, and the combination of features. In their study,
permissions were categorized into two types, such as requested and required permissions.
The 𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗,𝑖𝑖 is represented with 1, such as 𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 = 1 if the 𝑗𝑗𝑡𝑡ℎ API call is made in the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2595

application. Similarly, the required permission is represented by 1, such as 𝐴𝐴𝑖𝑖 = 1 . The third
feature was obtained by the concatenating of these two features. In the experimental part of
the study, there were 2510 samples including 1250 benign and 1260 malicious applications.
The authors achieved 96.88% accuracy by selecting a high number of features. This study
shows that the accuracy can be improved when the features are selected from both malware
and benign applications. It also can be concluded that Bagging (an ensemble classification
method) had the best performance in classifying the datasets.

De-Droid is another mobile botnet detection approach proposed by Karim et al. [43].
The authors claimed that this is a lightweight approach focusing on static analysis. This
approach considers the API calls and permissions to detect suspicious binaries. In this study,
5064 malicious and 14865 benign applications were used to decode the API calls and
permissions. Rashidi & Fung proposed a BotTracer, a clustering-based approach to detect
bot users by the same master [44]. The key idea behind this technique is to collect the expert
users’ responses to a permission request and recommend them to inexperienced users. The
first step of BotTracer is the analysis of the common features of bot users resulting in the
similarity graph. Then, a hierarchical clustering method employed to group the users based
on the distance, defined using similarity. However, the proposed approaches are unable to
detect zero-day attacks and to deeply scrutinize the applications for possible malicious
behaviour.

3. Data Collection and experimental study
For the experiments, the clean (benign) and infected third-party mobile applications were
used. Currently, there are various types of applications in the market, such as web tools,
native applications, and widgets [18]. The web applications are those developed through
HTML, JavaScript, and CSS, while the natives are developed with Android SDK. The
widget applications are those which are displayed on the Android desktop. Moreover,
experiments use benign applications of native nature. The samples were obtained from the
Google Android market [39]. The VirusTotal Malware Intelligence Service allows the
researchers to obtain samples from their databases [45]. Initially, 1865 applications were
obtained and tested with the VirusTotal tool to confirm their cleanness. Finally, to avoid the
duplication the Monte Carlo sampling method [66] was used giving in total 1330 benign
applications, as shown in Table 1.

Table 1. Number of Benign Applications for each category

Category Number of Apps Category Number of Applications
Education 120 Business 62
Music 103 Maps 42
Health and Fitness 94 Social 90
Finance 112 Photography 52
Medical 90 Puzzles 61
News 115 Sports 79
Shopping 117 Entertainment 122
Wallpaper 38 Communication 33

The Botnet applications, which also known as botware, are collected from the
different open source repositories, such as DREBIN, ISCX Android Botnet Dataset, and
Android Malware Genome Project [46-48]. The DREBIN dataset consists of 5560

2596 Anwar et al.: A Smart Framework for Mobile Botnet Detection Using Static Analysis

applications from different 179 malware families, the ISCX dataset includes 1929 botnet
samples, and the Android malware genome project consists of 1200 malware samples. To the
best of our knowledge, these are the largest Android malware and botnet datasets, which
include all the publicly available samples and open-source malware repositories. The same
number of benign and botware applications are considered to facilitate machine-learning
modelling. Table 2 shows the number of malware applications and the name of the
corresponding malicious activities. Symbol shows that the malware family can perform
this activity, while the × shows that the malware cannot perform it.

Table 2. Number of Samples for Botware Applications with Malicious Activities

Category

N
um

be
r

of
 A

pp
s

IM
E

I/
IM

SI

SM
S

C
al

l

L
oc

at
io

n

R
oo

t E
xp

lo
it

R
ep

ac
ki

ng

D
D

oS

B
an

ki
ng

 In
fo

rm
at

io
n

AnserverBot 95
Bmaster 6
DroidDream 143
Geinimi 126
MisoSMS 92
NickySpy 112
Cot Compatible 72
PJapps 118
Pletor 80
RootSmart 25
Fjcon 42
FakeInstaller 90
Twikabot.A 90
Saiva 92
Sweaweth 82
AndroRat.A 65

4. Smart Framework for Android Botnet Detection

This section demonstrates the proposed smart framework for mobile botnet detection, which
is based on the static features extraction in Android devices (Fig. 2). The proposed
framework has five layers of mobile security that can detect applications having the features
of mobile botnets. These five layers of detection technique are the decompiler, extractor,
smart learner, features refiner, and the machine learning module respectively. Using the
framework, whenever a user completes the installation of an application, a popup window
appears on the screen if the installed application contains an injected code from the third
party (i.e. from a cyber-criminal).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2597

Decompiler

.apk file

Features Extractor

Check the obtained files and folder for
specific static features

Smart Learner

Pattern Identification of Botnet related
features on the bases of their Usage
Frequency Using Apriori Algorithm

Machine Learning Modeling

Random Forest

Features Refining

Features Refining process using
Information Gain Algorithm

Result (Botware or Benign)

AndroidManifest.XML
Res

Resources.arsc
Assets Lib/*/*.so

Classes.DEX

Fig. 2. A Proposed Framework for Android Botnet Detection

4.1. App Decompiler
Decompiler is responsible for the translation of the machine code into the source code. The
Android applications are distributed as a machine code that is called Android package file
(APKs). In order to decompile the APK files, the Android asset packaging tool (AAPT) was
used (available within the Android SDK [49]). Each APK file contains the
AndroidManifest.xml and the classes.DEX files that are decoded to make them human-
readable. The AndroidManifest.xml describes an Android application and encloses the
essential information about the APK file, such as permissions, activities, services, and intent-
filters. The same procedure was applied to decompile the classes.DEX files, which are the
java source code.

4.2. Feature Extractor
This component performs reverse engineering of each decompiled application to extract
static features from the AndroidManifest.xml and the classes.DEX files. Besides, tags to
interact with the features inside and outside of the Android applications were extracted. For

2598 Anwar et al.: A Smart Framework for Mobile Botnet Detection Using Static Analysis

example, <uses – permission> was employed to get the permissions for accessing hardware
and other components of smartphones, while <uses – activities> was used to switch between
different activities inside the application. Permission tags can only interact with the
smartphones when a user grants permissions to the applications during the installation or
later on. However, not all requested permissions may be used by the application. E.g. <uses –
features> is required to interact with other components of the application, while some of the
features may not be used.

In order to extract these features from an Android application, the Androguard open-
source tool was used [50]. After extraction of required features, for each Android application,
a CSV file was generated for further processing. The static features, namely, permissions,
activities, broadcast receivers, services, and API calls, were extracted from the
AndroidManifest.XML and the classes.DEX files. In order, to automatically perform
extraction of the features a Python script was applied to all Android applications. Let l and m
be correspondingly the number of Android applications and the set of features including
permissions, activities, broadcast receivers, services, and API calls. The features vector for
the application i is �𝑋𝑋𝑖𝑖,1,𝑋𝑋𝑖𝑖,2,𝑋𝑋𝑖𝑖,3, … … ,𝑋𝑋𝑖𝑖,𝑛𝑛� where:

𝐹𝐹(𝑖𝑖, 𝑗𝑗) = � 1 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑎𝑎𝑡𝑡𝑖𝑖𝑎𝑎𝑎𝑎 𝑎𝑎 𝑢𝑢𝑢𝑢𝑒𝑒𝑢𝑢 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖𝑒𝑒𝑎𝑎𝑡𝑡𝑢𝑢𝑓𝑓𝑒𝑒 𝑘𝑘
0 𝑂𝑂𝑡𝑡ℎ𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖𝑢𝑢𝑒𝑒

 (1)

Similarly, suppose an instance of the class in the generated dataset is Fi ∈ {Botware,
Benign}, where i shows the class of application [51]. Features of each extracted application
were saved in the CSV file for further analysis (Fig. 3). The file begins with the hash
function of the application and ends with the sum of all the enabled features. The hash value
represents the MD5 values of the Android applications, while the values “1” and “0”
correspond to enabled and disabled features, respectively. The sum of the enabled values was
utilized for further analysis. In general, the analysis shows that the applications that were
using more features had a higher probability to have a botware intention.

Fig. 3. Example of the CSV file of Extracted Application

Fig. 4 shows the frequencies of the permissions requests and API calls feature. The
figure demonstrates that the number of the used by botware applications API calls and
requested permissions is higher as compared to the benign applications. At the same time,
requesting more features did not mean that the botware developers would be able to use all
these features. The logic behind requesting a large number of features is that malware
developers are trying to evade detection by calling these features indirectly through the code
of another program. This strategy can certainly hinder the detection of malware codes.

Fig. 4(a) illustrates the number of requested and used permissions by botware and
benign applications. The botware features range from 18.570 % to 97.860 % while from
1.430% to 51.430% for benign applications. The average percent of requested permissions of
botware is 54.249% and 11.323% for benign applications. This enormous difference shows

(00DA00BA346A4B1AB452651A003A0BA37A463E4A4BAB452651A),<1,1,1,0,1,1,
0,0,1,0,1,0,1,1,1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,1,1,1,0,1,1,0,
0,1,0,1,0,1,1,1,1,1,1,1,0,0,1,0,1,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,11,1,1,0,1,1,0,0,
1,0,1,0,1,1,1,1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,1,1,1,0,1,1,1>,(80)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2599

0 20 40 60 80 100

INTERNET

READ_CONTACTS

READ_SMS

CALL_PHONE

WRITE_SETTINGS

CHANGE_WIFI_ST…

SYSTEM_ALERT_W…

DISABLE_KEYGUA…

CAMERA

PROCESS…

Comparison of requested permissions

Benign Botware

that botware applications request a much bigger number of permissions features as compared
to benign applications. For instance, one of the common features of botware and benign
applications is the INTERNET permission as shown in Fig. 4(a). Here, the requests
generated by botware applications was 97.86%, while 51.43% for benign applications. It
shows that botware applications are usually generating more requests as compared to benign
applications. Therefore, the smartphones users should be aware of the botware’s susceptible
permissions requests during the installation of an Android application. The comparison of
benign and botware applications with respect to API calls is given in Fig. 4(b). The obtained
results show that botware applications use more API calls as compared to benign
applications. At the same time, almost the same usage ratio can be seen for the services and
the broadcast receivers.

(a) Permissions (b) API Calls
Fig. 4. The number of requested permissions and activities

of botware and benign applications

4.3. Smart Learner
The smart learner takes data from the feature extractor component and generates the pattern,
based on the assigned frequencies, by using the Apriori algorithm in WEKA tool [52]. The
Apriori algorithm was chosen to identify the patterns of significant features combination [53].
This algorithm deals with the subset of events beyond examining the specific order of events.
For easy processing, all extracted features were indexed, e.g. INTERNET with P1,
READ_PHONE_STATE with P2, and so on. Similarly were indexed activities, services,
broadcast receivers, and API calls.

The Apriori algorithm takes as an input the dataset Bbot that contains a full set of
features of n botnet applications. Let
𝐴𝐴 = {𝐴𝐴1,𝐴𝐴2,𝐴𝐴3, … … ,𝐴𝐴𝑛𝑛,𝐴𝐴1,𝐴𝐴2,𝐴𝐴3, … … ,𝐴𝐴𝑛𝑛, 𝐵𝐵1,𝐵𝐵2,𝐵𝐵3, … … ,𝐵𝐵𝑛𝑛,
𝑆𝑆1,𝑆𝑆2,𝑆𝑆3, … … , 𝑆𝑆𝑛𝑛,𝐴𝐴𝐴𝐴1,𝐴𝐴𝐴𝐴2,𝐴𝐴𝐴𝐴3, … … ,𝐴𝐴𝐴𝐴𝑛𝑛, } be an instance of Bbot. The Apriori algorithm

0 20 40 60 80 100

connect

getSubscriberId

getNetworkInfo

sendTextMessage

getSimSerialNumber

requestLocationUpdat…

getWifiState

openFileDescriptor

Comparison of API calls

AP
I C

al
ls

Benign Botware

2600 Anwar et al.: A Smart Framework for Mobile Botnet Detection Using Static Analysis

begins by pinpointing the individual repeated items in the Bbot dataset and extending them to
substantial sets as much as that item sufficiently often appears. For example, 𝐴𝐴 =
{𝐴𝐴1,𝐴𝐴1,𝐵𝐵1, 𝑆𝑆1,𝐴𝐴𝐴𝐴1} is a candidate item set. There are two values need to be known in
advance for the Apriori algorithm, which are the support and the confidence levels, for the
calculation of the frequency of features, used in the Bbot dataset. In this case, the support
value of the candidate itemset {𝐴𝐴1,𝐴𝐴1,𝐵𝐵1,𝑆𝑆1,𝐴𝐴𝐴𝐴1} was computed by formula (2).

𝑆𝑆𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑡𝑡 (𝐴𝐴1,𝐴𝐴1,𝐵𝐵1, 𝑆𝑆1,𝐴𝐴𝐴𝐴1) = Number of applications that contains 𝑃𝑃1,𝐴𝐴1,𝐵𝐵1,𝑆𝑆1,𝐴𝐴𝑃𝑃1 in 𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏
𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇𝑙𝑙 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑇𝑇𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑖𝑖𝐴𝐴𝑇𝑇𝑡𝑡𝑖𝑖𝑇𝑇𝑛𝑛𝐴𝐴 𝑖𝑖𝑛𝑛 𝐵𝐵𝑏𝑏𝑏𝑏𝑏𝑏

 (2)

The candidate item set is considered as a frequent itemset or a relevant pattern, only
if 𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝑡𝑡 (𝐴𝐴1,𝐴𝐴1,𝐵𝐵1, 𝑆𝑆1,𝐴𝐴𝐴𝐴1) ≥ threshold (t), where 𝑡𝑡 is a user-defined threshold. In
this study, we set 0.5 as a minimum threshold [54]. The same process was applied for
frequent itemset identification for benign applications. Table 3 shows the identified unique
patterns for botware applications. The pattern ID represents the indexed ID of used features
pattern, while the support values are calculated for each used feature pattern (UP).

The support values in Table 3 show that the botware applications mostly utilize the
combination of the features, such as the INTERNET, RECEIVE_SMS,
WRITE_EXTERNAL_STORAGE, com.clientsoftware.ServiceStartr,
com.phone.callcorexy.x-y.SReceiver, and SYSTEM_A-LERT_WINDOW to perform the
malicious activities on the smartphone and to steal a piece of sensitive information from it.
Once this mentioned malicious activity is performed, it sends the stolen information to the
C&C server through the communication channel. In this malicious activity, INTERNET
permission provides the connection between smartphone and C&C server, while the
RECEIVE_SMS permission received the updates and commands about the activity. Botware
applications having the INTERNET, WRITE_SMS and SEND_SMS permissions enable can
send SMS and MMS to premium numbers with the combination of MAIN ACTIVITY and
TOUCHSCREEN. It is reported that sending of SMS and MMS to the premium numbers can
cause financial losses [31].

Furthermore, the location related to permissions, such as
ACCESS_COARS_LOCATION and ACCESS_FINE_LOCATION is used for the
smartphone data collection and network location data gathering. The pattern UP29 is the
combination of INTERNET, ACCESS_NETWORK_STATE, com.google.android.mms.-
LiveReceiver and com.clie-ntsoftware.SDCardServiceSt-arter is used to handle the
connection between bots and botnets.

Table 3. Unique Patterns for the Botware and Benign used Features

Used
Pattern

Botware Benign Used
Pattern

Botware Benign Used
Pattern

Botware Benign

UP1 0.9731 0.0269 UP15 0.7349 0 UP29 0.6269 0.005
UP2 0.9374 0.1059 UP16 0.722 0 UP30 0.6254 0
UP3 0.9151 0.0773 UP17 0.7214 0 UP31 0.6235 0.0556
UP4 0.9045 0.137 UP18 0.7202 0.0216 UP32 0.6229 0.0235
UP5 0.9009 0.1831 UP19 0.7178 0.1945 UP33 0.6216 0
UP6 0.8856 0 UP20 0.7173 0.0731 UP34 0.605 0
UP7 0.8806 0.1059 UP21 0.7089 0 UP35 0.6014 0
UP8 0.7949 0.0731 UP22 0.7015 0.0556 UP36 0.5945 0.1718
UP9 0.7867 0.1363 UP23 0.6974 0 UP37 0.5831 0.0269
UP10 0.7796 0.0235 UP24 0.6828 0.0773 UP38 0.5565 0
UP11 0.7774 0.1831 UP25 0.6773 0 UP39 0.5363 0.1363

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2601

UP12 0.7758 0.2055 UP26 0.6731 0.1945 UP40 0.5338 0.1718
UP13 0.7712 0.1831 UP27 0.6544 0 UP41 0.5059 0
UP14 0.7705 0.0216 UP28 0.6534 0 UP42 0.5000 0

4.4. Features Refiner
This component takes input from the smart learner and use it to achieve high accuracy in a
specified model of the problem domain. In the feature’s extraction process, many features
are irrelevant and redundant. Such redundant features may create an issue for the learning
algorithm, which includes misleading, overfitting, reducing accuracy and generality, time
and space complexity [55]. It may increase the crucial effects since mobile devices have
limited resources [56]. Selecting the most appropriate features to form a large feature vector
space can significantly change the accuracy of the predicted model. In order to increase the
efficiency and accuracy of botnet detection, it is important to implement an effective feature
refining process. The basic idea of feature refining is to select the most related to botware
applications features.

For this purpose, the information gain (IG) algorithm was applied to the malicious
dataset [57]. It is the most common feature selection method in botware detection techniques
[58]. While most of the methods followed the feature ranking approach based on specific
metrics, the value was computed to score each feature individually. According to this
measure, a feature Y is regarded as a better indicator than a feature Z for a class X,
if 𝐴𝐴𝐼𝐼(𝑋𝑋|𝑌𝑌) > 𝐴𝐴𝐼𝐼(𝑋𝑋|𝑍𝑍). Approach ranks the features by the information gained and select the
high ranked features. For the computing of information gain value, WEKA is used [52]. The
Android applications are inspected manually, and then the permission, activities, broadcast
receivers, services, and API_Calls are noted. All these features have a specific relationship
with respect to botnet activities.

4.5. Machine Learning Modelling
This component takes input data from the smart learner component. Once the features are
refined, the next stage is to train the machine learning classifier. In anomaly detection,
various machine-learning techniques can be used to train a model and test the datasets [60;
68; 80]. Since the dataset used in this research study is labelled and has two target
classes - Benign and Botware, supervised learning technique was selected. In supervised
learning, the algorithm uses a labelled dataset, which provides a possibility to evaluate the
accuracy of the model on training data. This why a supervised learning technique is
generally more accurate and reliable as compare to unsupervised learning. In this study, the
selecting classifier is based on the performance, a number of classes and the ranking criteria
of features. Since the prototype of the framework was implemented in Java, WEKA, which
is a data mining software also written in Java [52, 53], was used.

During the classification phase, several machine-learning algorithms were selected
to recognize botware applications based on classification accuracy. Choosing an appropriate
classifier ultimately demonstrates the accuracy of the detection framework. To choose a
proper machine-learning algorithm for classification, the following requirements were
considered: (1) diversity (the number of static features were taken from the multiple
domains); (2) sparse feature set (the supreme features set were finally selected for the
framework evaluation); (3) scalability (the system should be able to deal with future
requirements of users); and (4) performance (algorithms for testing and training should
provide a prompt response to a user). Given these considerations, support vector machine
(SVM), Random Forest, J-48, simple logistic regression (SLR), and Naïve Bayes were
selected as the classification algorithms to establish and test the proposed framework.

2602 Anwar et al.: A Smart Framework for Mobile Botnet Detection Using Static Analysis

5. Experimental Results
This section discusses the obtained results for individual and combined features.

5.1. Performance Evaluation Parameters
This section describes the evaluating process of the proposed botnet detection framework.
The performance has been evaluated using five matrices, namely True Positive Rate (TPR),
False Positive Rate (FPR), Precision, F-measure, and Accuracy, and next compared to the
existing state-of-the-art detection techniques. Literature review shows that these parameters
are commonly used for the evaluation of the malware detection frameworks and tools. Table
4 shows the evaluation parameters with the description and the corresponding formulas.

Table 4. Performance Evaluation Parameters of the Proposed Framework

Parameters Description Formula
True Positive Rate (TPR) When it is actually Botware, how often it

predicted as Botware
𝑇𝑇𝐴𝐴𝑇𝑇 = 𝑇𝑇𝐴𝐴/(𝑇𝑇𝐴𝐴 + 𝐹𝐹𝐹𝐹)

False Positive Rate (FPR) When it is actually Botware, how often it
predicted as Benign

𝐹𝐹𝐴𝐴𝑇𝑇 = 𝐹𝐹𝐴𝐴/(𝐹𝐹𝐴𝐴 + 𝑇𝑇𝐹𝐹)

Accuracy (ACC) The number of occurrences, correctly
classified 𝐴𝐴𝐴𝐴𝐴𝐴 =

(𝑇𝑇𝐴𝐴 + 𝑇𝑇𝐹𝐹)
(𝑇𝑇𝐴𝐴 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐴𝐴 + 𝐹𝐹𝐹𝐹)

F-Measure (F) A measure that combines precision (P) and
recall (R) is the harmonic mean of precision
and recall

𝐹𝐹 −𝑀𝑀𝑒𝑒𝑎𝑎𝑢𝑢𝑢𝑢𝑓𝑓𝑒𝑒 = 2(
𝐴𝐴 ∗ 𝑇𝑇
𝐴𝐴 + 𝑇𝑇)

Positive Predictive Value
(PPV), Precision

The ratio of predicted positives, which are
actually positive 𝐴𝐴𝐴𝐴𝑃𝑃 =

𝑇𝑇𝐴𝐴
𝑇𝑇𝐴𝐴 + 𝐹𝐹𝐴𝐴

5.2. Results
First, the experiments were conducted separately on the permissions, the activities, the
broadcast receivers, the services, and the API_calls features. These features were next united
to conduct experiments on the combined features set. The obtained results are summarized in
Table 5. In general, random forest obtained higher accuracy rate for all selected features as
compared to other classifiers (except the services feature). Considering only the accuracy of
evaluation, the random forest was found the best classifier. TPR, FPR, precision, and F-
measure were used to evaluate the proposed framework and to obtain more accurate results.
The experiments were performed on all selected classifiers by considering the mentioned
parameters.

Once researchers obtained the results for all selected features by considering
different classifiers, they combined the features to perform further experiments. Table 6
summarizes the obtained results. Random forest achieved the highest accuracy 98.2%, while
TPR is 0.7880, precision is 0.8893 and FPR is 0.1140. However, experiments produce a low
F-measure of 0.7457. Table 6 shows that the random forest achieved more accurate results
by considering the combined features.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2603

Table 5. Results, obtained by considering separate features

Features Algorithms TPR FPR Precision F-Measure Accuracy

Permissions

Random Forest 0.9114 0.0626 0.9127 0.9358 93.4000
Naïve Bayes 0.8802 0.0803 0.9016 0.9110 91.1200
SVM 0.8912 0.1118 0.8555 0.8832 87.0300
SLR 0.9000 0.1100 0.8443 0.7633 86.9300
J-48 0.9011 0.0100 0.9123 0.9128 90.6400

Activities

Random Forest 0.7927 0.1673 0.8814 0.7997 81.9300
Naïve Bayes 0.7250 0.1772 0.8809 0.7499 66.0200
SVM 0.7918 0.1138 0.7598 0.7634 79.9100
SLR 0.7111 0.1889 0.7741 0.7259 77.1800
J-48 0.7674 0.1326 0.8684 0.7912 80.7100

Broadcast
Receivers

Random Forest 0.8567 0.0816 0.8940 0.8602 86.6800
Naïve Bayes 0.6600 0.3267 0.7960 0.5250 81.0200
SVM 0.8180 0.0882 0.7932 0.8461 81.8000
SLR 0.6667 0.2700 0.6360 0.6250 83.0200
J-48 0.7923 0.1069 0.8714 0.7971 85.2300

Services

Random Forest 0.7150 0.0519 0.8632 0.7517 73.8600
Naïve Bayes 0.6753 0.5820 0.5780 0.7281 68.1800
SVM 0.7319 0.1272 0.8503 0.7359 74.4800
SLR 0.7142 0.1452 0.8461 0.6800 66.1800
J-48 0.6620 0.2662 0.6380 0.6470 71.4200

API_Calls

Random Forest 0.7580 0.1840 0.8393 0.7457 78.2600
Naïve Bayes 0.7550 0.1850 0.8270 0.7330 74.5700
SVM 0.7630 0.2400 0.8410 0.7510 76.2900
SLR 0.7533 0.1441 0.8237 0.7224 73.5400
J-48 0.7377 0.1288 0.8348 0.7402 75.3300

Table 6. Results, obtained by considering combined features

Algorithms TPR FPR Precision F-Measure Accuracy
Random Forest 0.7880 0.1140 0.8893 0.7457 98.2000
Naïve Bayes 0.7550 0.1850 0.8270 0.7330 92.5700
SVM 0.7630 0.2400 0.8410 0.7510 88.2900
SLR 0.7533 0.1441 0.8237 0.7224 83.5400
J-48 0.7377 0.1288 0.8348 0.7402 84.3300

5.3. Comparison with prior work
The need for new botnet detection techniques is a crucial security requirement of Android
devices. The proposed framework is an effective and efficient botnet detection approach for
Android devices. The proposed framework has high accuracy with the obtained value of
98.20%, compared to Rashidi & Fung (2016), obtained 89.30% by utilizing the permissions
feature. Sanz et al. (2013), obtained 94.83% accuracy by using the permissions and
API_Calls features as shown in Table 7. The accuracy obtained by Yerima et al., (2014) was
92.10 % and Peiravian & Zhu (2013) showed the accuracy score of 96%. Overall, the
proposed framework is more accurate when compared with Rashidi & Fung, (2016), Sanz et
al., (2013), Yerima et al., (2014) and Peiravian & Zhu, (2013). The main reason for the better
results of the proposed framework is adding the refining component and use of the features
selection approach. With using of refining component, the proposed framework ignored the
features, which are not vulnerable to Android botnets attacks.

2604 Anwar et al.: A Smart Framework for Mobile Botnet Detection Using Static Analysis

Table 7. Comparison with Existing Techniques

References Approach Platform Features Accuracy
[18] Static Android Permissions & API_Calls 94.83%
[42] Static Android Permissions & API_Calls 96%
[59] Static Android Permissions 92.10%

[44] Static Android Permissions 89.30%
Proposed

Framework Static Android Permissions, Activities, Broadcast
Receivers, Services & API_Calls 98.20%

Fig. 5 shows the accuracy represented by a bar graph. It depicted that the proposed
framework has high accuracy as compared to other considered studies.

Fig. 5. Comparison of accuracy of the proposed framework with existing solutions

The study [18] proposed to discover malicious applications by using the difference
in the Android application permissions that the application request upon installation.
Android permissions are coarse-grained [60]. For example, the INTERNET permission does
not have the capability to restrict access to a particular Uniform Resource Locator (URL).
READ_PHONE_STATE allows an app to identify whether the device rings or is on hold. At
the same time, it also allows the app to read sensitive information, such as device identifiers.
Permissions, as WRITE_SETTINGS, CAMERA are broadly defined, violating the least
privilege access principle. Access to WRITE_CONTACTS or WRITE_SMS does not imply
access to READ_CONTACTS or READ_SMS permissions [49]. Thus, permissions are not
hierarchical, and a developer must separately request them. In addition, at the installation
time, a user is forced to either grant all permissions or deny the application installation.
Hence, the dangerous permissions cannot be avoided at the installation time. Moreover, the
users cannot differentiate between the necessity and its misuse, which may expose
exploitation.

In approach [61], authors extracted static features from the androidmanifest.xml file of
666 Android applications. They used machine-learning techniques, such as K-Nearest
Neighbors (K-NN), Decision Trees, Bayesian networks, Support Vector Machines (SVM) to
detect malicious applications. K-NN was used due to its simplicity in classifying instances
into different classes; at the same time, a decision tree allowed an easy implementation. The

80.00

84.00

88.00

92.00

96.00

100.00

Sanz et al.,
2013

Peirvian &
Zhu, 2013

Yerima et al.,
2014

Rashidi &
Fung, 2016

Proposed
Framework

Accuracy (% age)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2605

Bayesian network was employed for determining the probability of a hypothesis certainty.
On the long run, SVM was used to solve the problem of kernel functions, which may lead
the technique to the non-linear classification surface [62].

The study [42] developed a machine-learning framework to analyze benign and
malicious applications by using the permissions and API calls as the features. In their study,
authors examined in total 2400 Android malware and benign applications to extract the
requested permissions and API calls. Authors achieved 96.88% of accuracy by selecting a
high number of features. This approach shows that the accuracy can be improved when the
number of features is selected from both malware and benign applications. Extracting and
selecting a bigger number of features allow to improve the accuracy, while the memory and
time use are increased [60]. This framework was specifically focused on malware
applications. However, using these approaches mobile botnets cannot be detected in Android
devices. This study has almost the same nature as an aforementioned study on MAMA [18],
which use the same features. Researchers achieved 94.83% accuracy when 130 features were
examined.

Yerima et al. (2014) developed a proactive machine-learning approach based on
Bayesian classification and aimed to detect zero-day Android malware attacks using static
analysis approach [59]. This approach has three main components, which are decompression,
identification, and classification. First, an application is decompiled by reverse engineering
by using Dalvik VM to extract features from the AndroidManifest.xml and .DEX classes
[63]. All extracted features are stored in a file with the .csv extension for further analysis. In
the identification step, this component converts the extracted features file to a readable form
for further analysis. In the classification process, the Bayesian algorithm classifies the
malware and benign applications as a result [52]. This approach was based on the large
existing set of malware of 49 families. Specifically, this technique achieved approximately
92.1% accuracy by using a set of 30 static features.

Karim et al. (2015) research work focused on Android malware identification only. By
using their approach, a mobile botnet cannot be detected. Authors used a few numbers of
features as compared to the study [42], which significantly affects the accuracy of malware
detection. According to the study [64], the time is taken for features extraction and
computation is decreased to 77%. However, another study showed that by using these
features the time taken for features extraction is increased at 28% [64]. Thus accuracy and
time consumption are the main issues need to be addressed.

BotTracer [44] is a clustering-based method to detect bot users controlled by the same
masters. The main method of the proposed method is to plot the Android users in various
groups based on their similarity. It is an Android permissions recommendation framework,
which allows users to grant application permissions requests in a fine-grained manner. In
Android applications, permissions are the main factor during installation that cannot be
ignored. For example, the INTERNET permission does not have the capability to restrict
access to a particular Uniform Resource Locator (URL), READ_PHONE_STATE allows an
app to identify whether the device rings or is on hold [65].

The key idea behind BotTracer technique [44] is to collect the expert users’ responses
to a permission request and recommend them to inexperienced users. BotTracer uses two
phases with the first analysis of the common features of the bot users for the construction of
a similarity graph. Then, a hierarchical clustering method groups those users based on the
distance, which is defined using similarity. This approach has many limitations in terms of
botnet detection. First, it detects the simulated bot from user profiles only. Secondly, it
considers the DEX bytecode, while it ignores the native code and app resources. Thirdly, the

2606 Anwar et al.: A Smart Framework for Mobile Botnet Detection Using Static Analysis

opcode sequence does not include high-level semantic information and hence generates false
negatives. With these limitations, the smart adversary can easily bypass this technique using
code transformation, such as inserting junk bytecode, restructure methods, and alter control
flow to evade the BotTracer prototype.

6. Conclusion and Future Work
Botnets have become one of the most significant threats to Internet-connected smartphones.
An increasing number of botnet attacks brings challenges for the detection of harmful
software. To contribute to this domain, this study proposes a new botnet detection
framework using static feature extraction and machine learning algorithms. In order to
identify the C&C structure and the most relevant features, a considerable number of botnet
applications were analyzed. The static features, such as permissions, activities, broadcast
receivers, services, and API calls were extracted and further analysed. The extraction of the
features, the used patterns and the feature refining component differentiate the proposed
technique from others. By using the information gain and the Apriori algorithms, the most
prominent features were identified that gives the possibility to classify an Android
application as a mobile botnet and to prevent an attack. The selected features were used in
the machine-learning algorithm for classification, which achieved 98.2% accuracy with very
low FPR (0.1140). Among the different classifiers used, the random forest gave the best
results. The obtained results show that the proposed framework accurately identifies botnet
applications. The limitation of the proposed approach is that it is based on static features; the
accuracy of prediction can be improved by expanding the functionality by dynamic
properties. It will be a direction of our future work.

References
[1] W. Wang, Z. Gao, M. Zhao, Y. Li, J. Liu, and X. Zhang, "DroidEnsemble: Detecting Android

Malicious Applications with Ensemble of String and Structural Static Features," IEEE Access, vol.
6, pp. 31798-31807, 2018, Article (CrossRef Link).

[2] L. Goasduff and C. Pettey, "Gartner says worldwide smartphone sales soared in fourth quarter of
2019 with 47 percent growth," Visited March, 2019.

[3] W. Fan, Y. Sang, D. Zhang, R. Sun, and Y. a. Liu, "DroidInjector: a process injection-based
dynamic tracking system for runtime behaviors of android applications," Computers & Security,
vol. 70, pp. 224-237, 2017. Article (CrossRef Link).

[4] I. Statista, "Number of mobile phone users worldwide (in billions) Retrieved from
http://www.statista.com/, Accessed on 21 January 2019.

[5] V. Vanitha, “Android Malware Analysis: A Survey,” International Journal of Innovations &
Advancement in Computer Science, Vol. 6, no. 1. January 2017.

[6] G. Gu, R. Perdisci, J. Zhang, and W. Lee, "BotMiner: Clustering Analysis of Network Traffic for
Protocol-and Structure-Independent Botnet Detection," in Proc. of USENIX Security Symposium,
vol. 5, no. 2, pp. 139-154, 2008. Article (CrossRef Link).

[7] Z. Inayat, A. Gani, N. B. Anuar, S. Anwar, and M. Khurram Khan, "Cloud-Based Intrusion
Detection and Response System: Open Research Issues, and Solutions," Arabian Journal for
Science and Engineering, 42, 399-423, 2017. Article (CrossRef Link).

[8] R. Nigam, “A timeline of mobile botnets,” Virus Bulletin, March, 2015. Retrieved from
https://www.virusbulletin.com/blog/2015/03/paper-timeline-mobile-botnets/

[9] D. F. Guo, A.-F. Sui, and T. Guo, “A behavior analysis based mobile malware defense system,"
in Proc. of 6th International Conference on Signal Processing and Communication Systems
(ICSPCS), IEEE, pp. 1-6, 2012. Article (CrossRef Link).

https://doi.org/10.1109/ACCESS.2018.2835654
https://doi.org/10.1016/j.cose.2017.06.001
http://www.statista.com/
https://www.usenix.org/legacy/event/sec08/tech/full_papers/gu/gu_html/index.html
https://doi.org/10.1007/s13369-016-2400-3
https://www.virusbulletin.com/blog/2015/03/paper-timeline-mobile-botnets/
https://doi.org/10.1109/ICSPCS.2012.6507944

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2607

[10] A. Naser, M. A. Majid, M. F. Zolkipli, and S. Anwar, "Trusting cloud computing for personal
files," in Proc. of International Conference on Information and Communication Technology
Convergence (ICTC), IEEE, pp. 488-489, 2014. Article (CrossRef Link).

[11] S. Anwar, M. F. Zolkipli, Z. Inayat, B. Odili, M. Ali, and J. M. Zain, "Android Botnets: A Serious
Threat to Android Devices," Pertanika Journal of Science and Technology, 26(1), 37-70, 2018.
Article (CrossRef Link).

[12] S. Anwar, J. M. Zain, Z. Inayat, R. U. Haq, A. Karim, and A. N. Jabir, "A Static Approach
Towards Mobile Botnet Detection," in Proc. of Electronic Design (ICED), 2016 3rd International
Conference on, Phuket, Thailand, IEEE, pp. 563-567, 2016. Article (CrossRef Link).

[13] K. Singh, S. Sangal, N. Jain, P. Traynor, and W. Lee, "Evaluating bluetooth as a medium for
botnet command and control," Detection of Intrusions and Malware, and Vulnerability
Assessment: Springer, pp. 61-80, 2010. Article (CrossRef Link).

[14] Y. Zeng, K. G. Shin, and X. Hu, "Design of SMS commanded-and-controlled and P2P-structured
mobile botnets," in Proc. of the fifth ACM conference on Security and Privacy in Wireless and
Mobile Networks, pp. 137-148, 2012. Article (CrossRef Link).

[15] S. Anwar, J. Mohamad Zain, M. F. Zolkipli, and Z. Inayat, “A Review Paper on Botnet and
Botnet Detection Techniques in Cloud Computing,” in Proc. of ISCI 2014 - IEEE Symposium on
Computers & Informatics, 2014.

[16] Z. Inayat, A. Gani, N. B. Anuar, M. K. Khan, and S. Anwar, "Intrusion Response Systems:
Foundations, Design, and Challenges," Journal of Network and Computer Applications, 62, 5374,
2016. Article (CrossRef Link).

[17] S. Anwar et al., "Cross-VM Cache-based Side Channel Attacks and Proposed Prevention
Mechanisms: A survey," Journal of Network and Computer Applications, vol. 93, pp. 259-279,
2017. Article (CrossRef Link).

[18] B. Sanz et al., "MAMA: manifest analysis for malware detection in android," Cybernetics and
Systems, vol. 44, no. 6-7, pp. 469-488, 2013. Article (CrossRef Link).

[19] J. Song, C. Han, K. Wang, J. Zhao, R. Ranjan, and L. Wang, "An integrated static detection and
analysis framework for android," Pervasive and Mobile Computing, vol. 32, pp. 15-25, 2016.
Article (CrossRef Link).

[20] S. Anwar, J. M. Zain, M. F. Zolkipli, Z. Inayat, A. N. Jabir, and B. Odili, "Response Option for
Attacks Detected by Intrusion Detection System," in Proc. of The 4th International Conference
on Software Engineering and Computer System, 195-200, 2015. Article (CrossRef Link).

[21] S. Anwar et al., "From intrusion detection to an intrusion response system: fundamentals,
requirements, and future directions," Algorithms, vol. 10, no. 2, p. 39, 2017.
Article (CrossRef Link).

[22] S. Khan, A. Gani, A. A. Wahab, M. Guizani, and M. K. Khan, "Topology Discovery in Software
Defined Networks: Threats, Taxonomy, and State-of-the-art," IEEE Communications Surveys &
Tutorials, 19(1), 303-324, 2017. Article (CrossRef Link).

[23] G. Suarez Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda, "Evolution, detection and
analysis of malware for smart devices," IEEE Communications Surveys & Tutorials, vol. 16, no.
2, pp. 961-987, 2014. Article (CrossRef Link).

[24] X. Meng and G. Spanoudakis, "MBotCS: A mobile botnet detection system based on machine
learning," in Proc. of International Conference on Risks and Security of Internet and Systems, pp.
274-291, 2015. Article (CrossRef Link).

[25] H. Binsalleeh et al., "On the analysis of the zeus botnet crimeware toolkit," in Proc. of Privacy
Security and Trust (PST), 2010 Eighth Annual International Conference on, pp. 31-38, 2010.
Article (CrossRef Link).

[26] M. Ge, J. B. Hong, W. Guttmann, and D. S. Kim, "A framework for automating security analysis
of the internet of things," Journal of Network and Computer Applications, vol. 83, pp. 12-27,
2017. Article (CrossRef Link).

[27] A. Flo and A. Josang, “Consequences of botnets spreading to mobile devices,” in Proc. of Short-
Paper Proceedings of the 14th Nordic Conference on Secure IT Systems (NordSec 2009), pp. 37-
43, 2009. Article (CrossRef Link).

https://doi.org/10.1109/ICTC.2014.6983188
http://www.pertanika.upm.edu.my/view_archives.php?journal=JST-26-1-1
https://doi.org/10.1109/ICED.2016.7804708
https://doi.org/10.1007/978-3-642-14215-4_4
https://doi.org/10.1145/2185448.2185467
https://doi.org/10.1016/j.jnca.2015.12.006
https://doi.org/10.1016/j.jnca.2017.06.001
https://doi.org/10.1080/01969722.2013.803889
https://doi.org/10.1016/j.pmcj.2016.03.003
https://doi.org/10.1109/ICSECS.2015.7333109
https://doi.org/10.3390/a10020039
https://doi.org/10.1109/COMST.2016.2597193
https://doi.org/10.1109/SURV.2013.101613.00077
https://doi.org/10.1007/978-3-319-31811-0_17
https://doi.org/10.1109/PST.2010.5593240
https://doi.org/10.1016/j.jnca.2017.01.033
http://folk.uio.no/josang/papers/RFJ2009-NordSec.pdf

2608 Anwar et al.: A Smart Framework for Mobile Botnet Detection Using Static Analysis

[28] M. Kwon et al., "Development and validation of a smartphone addiction scale (SAS)," PloS one,
vol. 8, no. 2, p. e56936, 2013. Article (CrossRef Link).

[29] G. Suarez-Tangil, J. E. Tapiador, P. Pens-Lopez, and J. Blasco, "DENDROID: A text mining
approach to analyzing and classifying code structures in Android malware families," Expert
Systems with Applications, vol. 41, no. 4, pp. 1104-1117, Mar 2014. Article (CrossRef Link).

[30] A. F. A. Kadir, N. Stakhanova, and A. A. Ghorbani, "Android Botnets: What URLs are Telling
Us," in Network and System Security: Springer, pp. 78-91, 2015. Article (CrossRef Link).

[31] E. Johnson and I. Traore, "Sms botnet detection for android devices through intent capture and
modeling," in Proc. of IEEE 34th Symposium on Reliable Distributed Systems Workshop
(SRDSW), pp. 36-41, 2015. Article (CrossRef Link).

[32] G. Kirubavathi and R. Anitha, “Structural analysis and detection of android botnets using
machine learning techniques,” International Journal of Information Security, 17, 153-167, 2018.
Article (CrossRef Link).

[33] A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer, "Detection of malicious code by applying
machine learning classifiers on static features: A state-of-the-art survey," information security
technical report, vol. 14, no. 1, pp. 16-29, 2009. Article (CrossRef Link).

[34] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach, B. Shapira, and Y. Elovici, "Mobile
malware detection through analysis of deviations in application network behavior," Computers &
Security, vol. 43, pp. 1-18, 2014. Article (CrossRef Link).

[35] M. B. Mollah, M. A. K. Azad, and A. Vasilakos, "Security and privacy challenges in mobile
cloud computing: Survey and way ahead," Journal of Network and Computer Applications, vol.
84, pp. 38-54, 2017. Article (CrossRef Link).

[36] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak, "An android application
sandbox system for suspicious software detection," in Proc. of 5th international conference on
Malicious and unwanted software (MALWARE), IEEE, pp. 55-62, 2010. Article (CrossRef Link).

[37] H. Tiirmaa-Klaar, J. Gassen, E. Gerhards-Padilla, and P. Martini, "Botnets: how to fight the ever-
growing threat on a technical level," Botnets: Springer, pp. 41-97, 2013. Article (CrossRef Link).

[38] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, "A review on feature selection in
mobile malware detection," Digital Investigation, vol. 13, pp. 22-37, 2015.
Article (CrossRef Link).

[39] Google Play Store, Retrieved from https://play.google.com/store?hl=en_GB. Access on 24 Feb,
2020.

[40] S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik, "A new android malware detection
approach using bayesian classification," in Proc. of 27th International Conference on Advanced
Information Networking and Applications (AINA), IEEE, pp. 121-128, 2013.
Article (CrossRef Link).

[41] G. Canfora, F. Mercaldo, and C. A. Visaggio, "An hmm and structural entropy based detector for
android malware: An empirical study," Computers & Security, vol. 61, pp. 1-18, 2016.
Article (CrossRef Link).

[42] N. Peiravian and X. Zhu, "Machine learning for android malware detection using permission and
api calls," in Proc. of 25th International Conference Tools with Artificial Intelligence (ICTAI),
IEEE, pp. 300-305, 2013. Article (CrossRef Link).

[43] A. Karim, R. Salleh, M. K. Khan, A. Siddiqa, and K. K. R. Choo, “On the analysis and detection
of mobile botnet applications,” Journal of Universal Computer Science, 22(4), 567-588, 2016.
Article (CrossRef Link).

[44] B. Rashidi and C. Fung, "BotTracer: Bot user detection using clustering method in RecDroid," in
Proc. of IEEE/IFIP Network Operations and Management Symposium (NOMS), pp. 1239-1244,
2016. Article (CrossRef Link).

[45] VirusTotal-Free online virus, malware and URL scanner. Retrieved from
https://www.virustotal.com/en

[46] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens, “DREBIN:
Effective and Explainable Detection of Android Malware in Your Pocket,” Ndss, vol. 14, pp. 23-
26, 2014. Article (CrossRef Link).

https://doi.org/10.1371/journal.pone.0056936
https://doi.org/10.1016/j.eswa.2013.07.106
https://doi.org/10.1007/978-3-319-25645-0_6
https://doi.org/10.1109/SRDSW.2015.21
https://doi.org/10.1007/s10207-017-0363-3
https://doi.org/10.1016/j.istr.2009.03.003
https://doi.org/10.1016/j.cose.2014.02.009
https://doi.org/10.1016/j.jnca.2017.02.001
https://doi.org/10.1109/MALWARE.2010.5665792
https://doi.org/10.1007/978-1-4471-5216-3_2
https://doi.org/10.1016/j.diin.2015.02.001
https://play.google.com/store?hl=en_GB
https://doi.org/10.1109/AINA.2013.88
https://doi.org/10.1016/j.cose.2016.04.009
https://doi.org/10.1109/ICTAI.2013.53
https://doi.org/10.3217/jucs-022-04-0567
https://doi.org/10.1109/NOMS.2016.7502994
https://www.virustotal.com/en
https://doi.org/10.14722/ndss.2014.23247

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2609

[47] UNB ISCX Android Botnet DataSet. Retrieved on April, 2018.
http://www.unb.ca/research/iscx/dataset/iscx-android-botnet-dataset.html

[48] Y. Zhou and X. Jiang, "Dissecting android malware: Characterization and evolution," IEEE
Symposium on Security and Privacy (SP), pp. 95-109, 2012. Article (CrossRef Link).

[49] Android developers permissions. Retrieved by April, 2018 from Article (CrossRef Link).
[50] Reverse engineering, Malware and goodware analysis of Android applications. Retrieved from by

April 2018 https://github.com/androguard/androguard
[51] N. Kheir, F. Tran, P. Caron, and N. Deschamps, "Mentor: Positive DNS reputation to skim-off

benign domains in botnet C&C blacklists," IFIP Advances in Information and Communication
Technology, vol. 428, pp. 1-14, 2014. Article (CrossRef Link).

[52] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, "The WEKA data
mining software: an update," ACM SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10-18,
2009. Article (CrossRef Link)

[53] T. C. Smith and E. Frank, "Introducing machine learning concepts with WEKA," Statistical
genomics: Methods and protocols, pp. 353-378, 2016. Article (CrossRef Link).

[54] A.-D. Schmidt et al., "Static analysis of executables for collaborative malware detection on
android," in Proc. of Communications, 2009. ICC'09. IEEE International Conference on, pp. 1-5,
2009. Article (CrossRef Link).

[55] E. Alparslan, A. Karahoca, and D. Karahoca, “BotNet Detection: Enhancing Analysis by Using
Data Mining Techniques,” Advances in Data Mining Knowledge Discovery and Applications,
2012. Article (CrossRef Link).

[56] M. Ali, J. M. Zain, M. F. Zolkipli, and G. Badshah, "Mobile cloud computing & mobile battery
augmentation techniques: A survey," in Proc. of IEEE Student Conference on Research and
Development (SCOReD), pp. 1-6, 2014. Article (CrossRef Link).

[57] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, ""Andromaly": a behavioral
malware detection framework for android devices," Journal of Intelligent Information Systems,
vol. 38, no. 1, pp. 161-190, 2011. Article (CrossRef Link).

[58] F. Ahmed, H. Hameed, M. Z. Shafiq, and M. Farooq, "Using spatio-temporal information in API
calls with machine learning algorithms for malware detection," in Proc. of 2nd ACM Proceedings
workshop on Security and artificial intelligence, pp. 55-62, 2009. Article (CrossRef Link).

[59] S. Y. Yerima, S. Sezer, and G. McWilliams, "Analysis of Bayesian classification-based
approaches for Android malware detection," IET Information Security, vol. 8, no. 1, pp. 25-36,
2014. Article (CrossRef Link).

[60] K. Sokolova, C. Perez, and M. Lemercier, "Android application classification and anomaly
detection with graph-based permission patterns," Decision Support Systems, vol. 93, pp. 62-76,
2017. Article (CrossRef Link).

[61] P. Narang, C. Hota, and H. T. Sencar, "Noise-resistant mechanisms for the detection of stealthy
peer-to-peer botnets," Computer Communications, vol. 96, pp. 29-42, 2016.
Article (CrossRef Link).

[62] W. Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, "Detecting Android malicious apps and
categorizing benign apps with ensemble of classifiers," Future Generation Computer Systems, 78,
987-994, 2018. Article (CrossRef Link).

[63] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil, and S. Furnell, "AndroDialysis: analysis
of android intent effectiveness in malware detection," computers & security, vol. 65, pp. 121-134,
2017. Article (CrossRef Link).

[64] A. Karim, S. A. A. Shah, R. B. Salleh, M. Arif, R. Md Noor, and S. Shamshirband, "Mobile
botnet attacks - an emerging threat: Classification, review and open issues," KSII Transactions on
Internet and Information Systems, vol. 9, no. 4, pp. 1471-1492, 2015. Article (CrossRef Link).

[65] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner, "Android permissions: User
attention, comprehension, and behavior," in Proc. of the Eighth Symposium on Usable Privacy
and Security, pp. 1-14, 2012. Article (CrossRef Link).

[66] Peskun, Peter H, "Optimum monte-carlo sampling using markov chains," Biometrika, 60(3), 607-
612, 1973. Article (CrossRef Link).

http://www.unb.ca/research/iscx/dataset/iscx-android-botnet-dataset.html
https://doi.org/10.1109/SP.2012.16
https://developer.android.com/guide/topics/manifest/permission-element.html
https://github.com/androguard/androguard
https://doi.org/10.1007/978-3-642-55415-5_1
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1007/978-1-4939-3578-9_17
https://doi.org/10.1109/ICC.2009.5199486
https://doi.org/10.5772/48804
https://doi.org/10.1109/SCORED.2014.7072944
https://doi.org/10.1007/s10844-010-0148-x
https://doi.org/10.1145/1654988.1655003
https://doi.org/10.1049/iet-ifs.2013.0095
https://doi.org/10.1016/j.dss.2016.09.006
https://doi.org/10.1016/j.comcom.2016.05.017
https://doi.org/10.1016/j.future.2017.01.019
https://doi.org/10.1016/j.cose.2016.11.007
https://doi.org/10.3837/tiis.2015.04.012
https://doi.org/10.1145/2335356.2335360
https://doi.org/10.1093/biomet/60.3.607

2610 Anwar et al.: A Smart Framework for Mobile Botnet Detection Using Static Analysis

[67] Thakur, Deepak; Gera, Tanya; Singh, Jaiteg, “Android Anti-malware Techniques and Its
Vulnerabilities: A Survey,” Smart Innovations in Communication and Computational Sciences,
Springer Singapore, pp. 315-328, 2018. Article (CrossRef Link).

[68] Narayan, V., & Shaju, B, “Malware and Anomaly Detection Using Machine Learning and Deep
Learning Methods,” Handbook of Research on Machine and Deep Learning Applications for
Cyber SecurityHershey, PA: IGI Global, pp. 104-131, 2020. Article (CrossRef Link).

[69] Awad, S. G. Sayed and S. A. Salem, “Collaborative Framework for Early Detection of RAT-Bots
Attacks,” IEEE Access, vol. 7, pp. 71780-71790, 2019. Article (CrossRef Link).

[70] Aminuddin, N. I., & Abdullah, Z. “Android Trojan Detection Based on Dynamic Analysis,”
Advances in Computing and Intelligent System, 1(1), 2019. Article (CrossRef Link).

[71] Attia Qamar, Ahmad Karim, Victor Chang, “Mobile malware attacks: Review, taxonomy &
future directions,” Future Generation Computer Systems, Vol. 97, pp. 887-909, 2019.
Article (CrossRef Link).

[72] Adebayo, O. S., & Aziz, N. A., “The Trend of Mobile Malwares and Effective Detection
Techniques,” Multigenerational Online Behavior and Media Use: Concepts, Methodologies,
Tools, and Applications, Hershey, PA: IGI Global, pp. 668-682, 2019. Article (CrossRef Link).

[73] Pedram Amini, Reza Azmi, Muhammad Amin Araghizadeh, “Analysis of Network Traffic Flows
for Centralized Botnet Detection,” Journal of Telecommunication, Electronic and Computer
Engineering, Vol 11, No 2, pp. 7-17, 2019. Article (CrossRef Link).

[74] Shisrut Rawat, Aishwarya Srinivasan, Vinayakumar R, “Intrusion detection systems using
classical machine learning techniques versus integrated unsupervised feature learning and deep
neural network,” Cornell University Preprint, 2019. Article (CrossRef Link).

[75] Talal, M., Zaidan, A.A., Zaidan, B.B. et al., “Comprehensive review and analysis of anti-malware
apps for smartphones,” Telecommun Syst, vol. 72, pp. 285-337, 2019. Article (CrossRef Link).

[76] Yaocheng Zhang, Wei Ren, Tianqing Zhu, Yi Ren, “SaaS: A situational awareness and analysis
system for massive android malware detection,” Future Generation Computer Systems, Vol. 95,
pp. 548-559, 2019. Article (CrossRef Link).

[77] Luo, Shiqi, et al., "Android Malware Analysis and Detection Based on Attention-CNN-LSTM,"
Journal of Computers, vol. 14, no. 1, pp. 31-43, 2019. Article (CrossRef Link).

[78] Seul-Ki Choi; Taejin Lee; Jin Kwak, “A Study on Analysis of Malicious Code Behavior
Information for Predicting Security Threats in New Environments,” KSII Transactions on
Internet & Information Systems, Vol. 13, Issue 3, pp. 1611-1625, Mar2019.
Article (CrossRef Link).

[79] S. Esmaeili and H. R. Shahriari, "PodBot: A New Botnet Detection Method by Host and
Network-Based Analysis," in Proc. of 2019 27th Iranian Conference on Electrical Engineering
(ICEE), Yazd, Iran, pp. 1900-1904, 2019. Article (CrossRef Link).

[80] Laraib U. Memon, Narmeen Z. Bawany, Jawwad A. Shamsi, “A comparison of machine learning
techniques for android malware detection using apache spark,” Journal of Engineering Science
and Technology, Vol. 14, No. 3, 1572 – 1586, 2019. Article (CrossRef Link).

https://doi.org/10.1007/978-981-10-8968-8_27
https://doi.org/10.4018/978-1-5225-9611-0.ch006
https://doi.org/10.1109/ACCESS.2019.2919680
http://www.fazpublishing.com/acis/index.php/acis/article/view/4
https://doi.org/10.1016/j.future.2019.03.007
https://doi.org/10.4018/978-1-5225-7909-0.ch037
http://journal.utem.edu.my/index.php/jtec/article/view/4733
https://arxiv.org/abs/1910.01114
https://doi.org/10.1007/s11235-019-00575-7
https://doi.org/10.1016/j.future.2018.12.028
https://doi.org/10.17706/jcp.14.1.31-43
https://doi.org/10.3837/tiis.2019.03.028
https://doi.org/10.1109/IranianCEE.2019.8786432
https://www.researchgate.net/publication/333480166_A_COMPARISON_OF_MACHINE_LEARNING_TECHNIQUES_FOR_ANDROID_MALWARE_DETECTION_USING_APACHE_SPARK

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020 2611

SHAHID ANWAR is an Assistant Professor in the Department of Software Engineering,
the University of Lahore, Pakistan. He received PhD degree in Computer Science from the
Universiti Malaysia Pahang in the year of 2019. He has completed his Master in Computer
Science (M.Sc.-CS) from Hazara University Pakistan in the year of 2009. He has published
over 18 research peer review articles in different journals and International conferences.
His current research interests include Android security and network security.

Mohamad Fadli Zolkipli is an Associate Professor at the Faculty of Computing,
College of Computing and Applied Sciences, Universiti Malaysia Pahang. He completed
his doctorate degree in Computer Science at Universiti Sains Malaysia (USM) in 2012. His
career in academia started when he joined KUKTEM in July 2002 as academician. His
teaching expertise includes Data Communication and Networking, Switching & Routing,
and Network Security. His research interests cover the broad area of digital security. He has
published numerous articles in the area of computer systems and networking especially in
security domain such as intrusion detection systems, malware analysis and cloud security.
As a part of research community, he also involves as a reviewer for conferences and
journals. He is currently active in supervising research students of master and doctorate
degrees.

Vitaliy Mezhuyev received a specialist degree in informatics from Berdyansk State
Pedagogical University (BSPU), Ukraine, in 1997. In 2002, he received a PhD in
Educational Technology from Kiev National Pedagogical University and, in 2012, an ScD
in Information Technology from Odessa National Technical University, Ukraine. From
2004 until 2014, he was a Head of the Department of Informatics and Software Engineering
at BSPU, Ukraine. From 2014 until 2019 he was a Professor at Faculty of Computer
Systems and Software Engineering in University Malaysia Pahang, Head of the Software
Engineering Research Group. Now he is a Professor at Institute of Industrial
Management in FH JOANNEUM University of Applied Sciences, Austria. During his
career, Vitaliy Mezhuyev participated in the multiple international scientific and industrial
projects, devoted to the formal modelling, design, and development of advanced software
systems as a network-centric real-time operating system; IDEs for the automation of
development of parallel real-time applications; tools for specification, verification and
validation of software products; visual environment for metamaterials modelling and others.
His current research interests include formal methods, metamodeling, safety modelling and
verification of software systems, IoT, and the design of cyber-physical systems.

ZAKIRA INAYAT is a Senior Lecturer in Department of Computer Science and
Information Technology, University of Engineering and Technology Peshawar, Pakistan.
She received a Ph.D. in Computer Science from University of Malaya, Malaysia. She
served as a Research Assistant in High Impact Research Project (Mobile Cloud Computing)
fully funded by Malaysian Ministry of Higher Education. She has completed her Master
degree in Computer Science (M.Sc-CS) from Hazara University of Mansehra, Pakistan in
2006. She has published over 15 research articles in different journals and international
conferences. Her current research interests include networks security, Smartphone Security,
Cloud Computing, IoT, and Big Data.

