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Abstract

5G network optimization problem is a challenging optimization problem in the practical
engineering applications. In this paper, to tackle this issue, Pareto fronts-driven
Multi-Objective Cuckoo Search (PMOCS) is proposed based on Cuckoo Search. Firstly, the
original global search manner is upgraded to a new form, which is aimed to strengthening the
convergence. Then, the original local search manner is modified to highlight the diversity. To
test the overall performance of PMOCS, PMOCS is test on three test suits against several
classical comparison methods. Experimental results demonstrate that PMOCS exhibits
outstanding performance. Further experiments on the 5G network optimization problem
indicates that PMOCS is promising compared with other methods.

Keywords: Cuckoo search, Pareto fronts,Convergence, Diversity, 5G Network Optimization

This paper is supported by National Natural Science Foundation of China (Grant No. 61806138).

http://doi.org/10.3837/1iis.2020.07.004 ISSN : 1976-7277



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 7, July 2020 2801

1. Introduction

Optimization is ubiquitous in real-life disciplines, such as identity authentication scheme

optimization[1], breast cancer classification[2,3], wireless sensor network optimization[4],
personalized recommendation system[5], water resource optimization[6], and so on. The
purpose of optimization is to find the best solution to an optimization problem[7,8]. General
optimization algorithms include three categories: evolutionary algorithms, swarm-based
algorithms and trajectory-based algorithms. CS[9] is a typical swarm-based method, which
has gained a lot of attentions since it was published. Up to now, many variants of CS have been
proposed for various purposes, which can be summarized as follows:

Theoretical research on various forms is the first category. Binary CS algorithms have
been published in many papers. To tackle binary optimization, Gherboudj et al.[10] designed a
discrete binary CS, where cuckoos are represented with a family of bits. Binary CS can be
applied to many practical issues, such as multiple destination routing problem[11], job shop
scheduling[12], and flow-shop scheduling problems[13]. Discrete cuckoo search is next
research topic. Travelling Salesman Problem(TSP)[14] is a popular benchmark problem,
which requires salesman to return to finishing point with minimal trip length. To tackle this
TSP, Ouyang et al.[15] designed a discrete version of CS, where all individuals are located on
the surface of a sphere. Also for TSP, Jati et al.[16] proposed two-phase discrete cuckoo search
algorithm, including discrete step size and a random step length. Combining CS with other
effective strategies is another research aspect. Abdul et al. [17] incorporated roulette wheel
and inertia weight strategies to CS for strengthening the search ability. To improve the
convergence, Giridhar et al.[18] introduced crossover operation to CS.

Hybridizing CS with other strategies is the second category, which is able to make up the
drawbacks of CS, as well as incorporating the advantage of CS to other methods. Genetic
algorithm(GA) is a popular method, which has shown great search ability. To redundancy
allocation problems, Kanagaraj et al.[19] designed a version of CS with GA by integrating
genetic operator CS. Further, Kanagaraj et al.[20] empirically proved the efficiency of the
combination of CS and GA. The advantage of differential evolution lies in exploring the
search space. Wang et al.[21] proposed to strengthen CS by embedding DE to CS.
Nancharaiah et al.[22] designed a hybrid technique combining CS and Ant Colony
Optimization (ACO), where ACO is responsible to update the pheromone, while CS is used as
a local search method.

In terms of application of CS, many papers have been reported. In medical domain, to
determine the best parameter settings, Liu et al.[23,24] employed CS to optimize the initial
parameter of the kernel function of support vector machine(SVM). To diagnose diabetes,
Giveki et al.[25,26,27] proposed a novel approach, which mainly combined SVM and CS. To
increase the cover rate of c-means defect in medical image segmentation, Manikandan et
al.[28] utilized CS and PSO to achieve quick convergence. In information retrieval domain,
finding relevant information is of great importance. To clearly organize and summarize the
retrieval information, Zaw et al.[29] proposed a cuckoo search clustering method. To extract
meaningful section of satellite image, Bhandari et al.[30] incorporated CS to wind-driven
optimization algorithm by introducing Kapur’s entropy.

In this paper, to tackle a 5G network optimization problem [31,32], Pareto fronts-driven
Multi-Objective Cuckoo Search(PMOCS) is proposed. Then three test suits are used to verify
the proposed method. Then, the 5G network optimization problem is tackled with the
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proposed method. Thus, according to the summaries above, this paper falls into the third
categories. The highlights of this paper are presented as follows:

1) Firstly, this paper proposed a multi-objective version of CS. To upgrade CS, this paper
redesigns the global search manner and local search equation. Moreover, the meanings
behind each upgrade are also explained.

2) To assess the proposed method, this paper utilizes two popular test suits in later
experiment, as well as several comparison methods. Detailed experimental results,
including tables and figures, are presented and analyzed.

3) Further, this paper applies PMOCS to a 5G network optimization. Experimental results
are analyzed to show the superiority of PMOCS.

This paper is originazed as follows. Basic definitions and related work are introduced in
Section 2. Following that, PMOCS is detailed in section 3. In next section, two experiments
are conducted, including an empirical verification on benchmark problem and the 5G network
optimization problem.

2. Preliminaries

2.1 Basic definitions

Generally, typical multi-objective optimization problems(MOPSs)[4,33,34] have two or three
objectives, which are formulated with the following expression:

min F (x) =[ £,(%), f,(x)..... fy (x)]
X = (X, Xy, Xp) € R
where f,, (X) indicates the M-th sub-objective function, X means the decision vector.

1)

For solution x, and X, , X, dominates X, if and only if Vie{l,2,3,..,M}:
f.(x)<f (x),3ie{,2,3,...,M}: . (x)<f. (x,).The domination relationship between
X, and X, can be expressed as X; < X, .

2.2 Related Work

CS[9], as a typical swarm-based method, mainly mimics the breeding behavior of cuckoo.
Cuckoo is able to intelligently choose host’s nests to lay their eggs. Usually, Offspring have
higher survival rates. Yang et al.[9] abstracts these behaviors with the following formulations.

Assuming X, is the position of cuckooi, X, is updated with the following global update
manner:

Xi(t) = X;(t) + o ® Levy(2) @)
where @ means entry-wise multiplications and o > 0 indicates the step size, which is
defined with following equation:

o =0 X (X (1) = Xpegt) 3
where o, =0.01, X, indicates the global best position in current population.

Levy()) in Eq.(2) satisfies Eq.(4):
Levy(A) ~p=t" 4
where 1<A <3,
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However, the egg lay by cuckoo i is generally discovered and abandoned with
probability p, .In this case, new egg should be lay again with the following manner:

Xi(t+1) = X; () +rx(X, ()= X;(t)) ()
where both X, (t) and X (t') present two random cuckoo birds. r indicates a random value

in [0 1].
The flowchart of CS is expressed with Fig. 1.

< Begin )—» Define related parameters —#| Initialize the population

Randomly ge_znerate Calculate the fitnesses <t Update c_uckoo positions
probability r, with Eq.(2)

Fig. 1. Flowchart of CS

Reach the stopping
criterion?

End

Obviously, CS is originally designed for single-objective optimization problems because the
global best in Eg.(2) does not exist in multi-objective optimization problems (MOPS)
[35,36,37], instead of Pareto sets. Over the past decades, numerous researchers are dedicated
to apply CS to MOPs. For example, Hanoun et al.[38] designed a Pareto archived
multi-objective CS to tackle a multi-objective job shop scheduling problem. Zhang et al.[39]
proposed a multi-objective CS by introducing a non-dominated sorting strategy and a
dynamical local search strategy to CS. Coelho et al.[40] employed the nearest neighbor
density estimation method to redesign CS for MOPs. Wang et al.[41] incorporated the
non-dominated sorting strategy of NSGA-II into CS for tackling optimal design of water
distribution system. To solve multi-objective community detection problem, Zhou et al.[42]
redefined a location update strategy and a abandon operator in discrete form. To optimize the
heat transfer in plate-finheat exchangers, Wang et al.[43] designed a non-uniform mutation
operator and a differential evolution operator to strengthen the convergence of CS. To extend
CS to multi-objective problems with more than three objectives, Cui et al.[44] proposed to
update each dimension of each cuckoo with different probabilities.

As no-free lunch theorem[45] points out, no one method performs the best on all kinds of
problems. Although various multi-objective CS[39,46,47] have been proposed and have
exhibited outstanding performance in practical problems, they may be not suitable to the 5G
network optimization problem[31]. Therefore, this paper specially designs a Pareto
fronts-driven Multi-Objective Cuckoo Search algorithm (PMOCS).

3. Proposed method

In MOPs, there generally exist multiple Pareto fronts due to the conflict nature of various
objectives. In principle, the former Pareto front is better than the later Pareto front regarding
the convergence. Thus, to utilize the leading information inspired from the different Pareto
fronts, the global manner is upgraded with Eq.(6):

X, (t)=X,(t)+0.01xax Lxrgx (X, (t)— X;ater ®) (6)
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where o =1.0, L is generated with Levy distribution. r; follows the standard Gaussian

distribution. Both X, (t) and X, (t) come from the same Pareto front, while X;’"‘” (t) comes

from the Pareto front which is inferior to X, (t) ’s Pareto front.

The reason for designing Eq.(6) can be illustrated with Fig. 2. Assuming there are two
Pareto fronts in objective space, individual P, and P, belong to the first and second Pareto

front, respectively. It can be said that P, is superior to P, in terms of convergence. Thus,

P, — P, is able to provide the leading information to individuals to be updated as the arrow in

Fig. 2 shows. In other words, P, — P, is used to facilitate the convergence by providing the

convergent information.

The First Pareto Front

f A \ The Second Pareto Front f, A \ The Second Pareto Front
2 ! h) 3
) ; o ,/
e * ¢
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\ P, \ .\ P,
° } it '
.\ \. '\ \.
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. \‘ . 3 : \‘ )
o 0
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Fig. 2. lllustration of Eq.(6)

The First Pareto Front

Fig. 4. lllustration of Eq.(7)

The local search manner is upgraded as follows:

X (t+1) = X;(t) +rx (X, (t) = X} (t))

(")

where both Xk(t') and Xj(t') come from the first Pareto front. Note that, to further
strengthen the diversity in later search stage, this paper employs a tournament selection
strategy to generate Xk(t') and Xj(t') . For completeness, the basic framework of the
tournament selection strategy is presented in Fig. 3.

11

Is

T Choose the best individual

In-1

11

I2

I
bR
I3

andomly select individuals

...... In

Fig. 3. lllustration of tournament selection strategy
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Eq.(7) is used to strengthen the diversity. As illustrated in Fig. 4. Let P.and P, be two

individuals from the first Pareto front, P, —P, indicates the black arrow, which means

individuals will be guided to search more diverse potential sections.
Updating population is a vital operation which can ensure that high-quality cuckoos pass to
the next generation. PMOCS employs the non-dominated sorting strategy and crowding

distance[48,49,50] to update the population. As Fig. 5 exhibits, parent population B, and
offspring population Q, are firstly merged into one population P, U Q, of 2N cuckoos. After
that, the non-dominated sorting strategy is used to divide P, Q, into multiple Pareto fronts.

Then, N cuckoos are selected from the P, U Q, . Note that, if only partial cuckoos in certain

Pareto front are included into the next generation, the crowding distance is used as the
indicator to measure each individual’s crowding degrees. Less crowded individuals are
preferred and included into the next generation.

Non - dominated sorting CrowdingDistance

T ]
P F, = = p,
F3
| R | -
Qt — ERM’
|
] ]

Fig. 5. lllustration of population update

The flowchart of PMOCS is presented in Fig. 6. As can be seen, firstly, the population is
initialized after defining the related paramters, such as the discover probability. Then, Cuckoo
popistions are updated with Eq.(6) if the stopping criterion is not reached. After that, some
cuckoo positions are updated with Eq.(7). Following that, the resultant cuckoos are updated in
combintion with previous cuckoos for the next generation. If the stopping criterion is not
reached, repeat the procedures above. Otherwiese, output the Pareto set.

< Begin >—> Define related parameters — Initialize the population

Randomly _ggnerate Calculate the fitnesses < Update guckoo positions
probability 1 with Eq.(6)

Reach the stopping
criterion?

Fig. 6. Flowchart of PMOCS

End
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4. Experimental Results and Analysis

The section is divided into two experiments. One experiment is to verify PMOCS with
benchmark problems, and the second one is to apply PMOCS to the 5G network optimization
problem. Before that, experimental settings are introduced.

4.1 Experimental settings

To verify PMOCS, various methods, including HMOCS[39], NSGA-11[48], NNIA[51] and
MOPSO[52] are used as comparison algorithms. All parameters related to comparison
methods are presented in Table 1, which follow the settings of original papers. The
performance indicator is IGD[53], which is able to measure both the convergence and
diversity. The test suites are ZDT[54], DTLZ[55] and MaF[56], all of which are presented in

Table 2. The discover probability p, is set to 0.3. All algorithms run 20 times.

Table 1. Parameter settings

Method Parameter
NNIA Na=20, nC=100

HMOCS p,=0.25, r=rand

MOPSO div=10

PMOCS p.=0.3

NSGA-II p.=1, pn=1/dimension.

Table 2. lllustration of test problems

Problem Objective | Dimension Maximum lteration
ZDT1 2 30 100
ZDT2 2 30 100
ZDT3 2 30 100
ZDT4 2 10 100
DTLZ1 3 7 700
DTLZ2 3 12 250
MaF1 3 12 100
MaF2 3 12 100

4.2 Experimental results and analysis

Table 3 exhibits the experimental results, where the best values are highlighted in boldface.
The values in parentheses are variances. From Table 3, we can observe that PMOCS perform
better on all test instances except ZDT2 and MaF2. On ZDT2, PMOCS is obviously inferior to
NSGA-II. On MaF2, although PMOCS is slightly worse than HMOCS, there is no evident
difference between them. Therefore, PMOCS is empirically better than other comparison
methods.

Table 3. Comparison of experimental results

Problem PMOCS HMOCS NSGA-II NNIA MOPSO
ZDT1 | 1.5352e-1(7.83e-2) | 2.1845¢-2 (6.88e-3) | 1.5728e-1(9.11e-2) | 1.6697e-1 (4.41e-2) | 5.0737e+1 (5.07e-1)
ZDT2 | 6.033le-1(1.32e-1) | 3.7422¢-2 (2.99¢-3) | 3.7329e-1(2.58e-1) | 6.0098e-1 (1.62e-1) | 5.1458e+1 (2.99e+0)
ZDT3 | 1.9123e-1(1.30e-1) | 1.9132¢-1(8.01e-4) | 2.1955e-1(1.61e-1) | 1.9755e-1 (1.49e-1) | 4.0852e+1 (1.06e+1)
ZDT4 | 1.7652e-1 (1.0le-1) | 5.7738e+0 (1.52e+0) | 2.7733e-1(7.60e-2) | 1.7879-2 (2.16e-3) | 1.8461e+1 (4.11e+0)
DTLZ1 | 2.0126e-2 (4.49¢-3) | 2.3294e-2 (1.61e-4) | 2.6706e-2 (6.22e-4) | 2.7550e-2 (1.01e-3) | 4.5615e+0 (1.90e+0)
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DTLZ2

5.4273e-2 (3.29e-4)

7.5090e-2 (9.44e-4)

7.0060e-2 (5.83e-4)

6.9691e-2 (4.07e-3) | 1.3433e-1 (2.72e-2)

MaF1

4.1999¢-2 (2.67e-4)

4.3399¢-2 (3.63e-4)

5.8512e-2 (1.28¢-3)

6.0241e-2 (2.03¢-3) | 7.5870e-2 (3.07¢-3)

MaF2

3.3249-2 (1.16e-3)

3.1939%-2 (2.19e-3)

5.0499¢-2 (7.55e-4)

5.4751e-2 (5.05e-3) | 4.6688e-2 (6.68e-3)
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MaF1
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Fig. 7. Comparison of Pareto fronts on test problems

Fig. 7 presents the comparison of Pareto fronts obtained by PMOCS and HMOCS on all test
problems. It can be seen that there is not obvious differences on ZDT1, ZDT4, DTLZ1, MaF1
and MaF2. Regarding ZDT2 and ZDT3, PMOCS is evidently superior to HMOCS because
certain regions are missing for HMOCS. On DTLZ2, the fact can be seen that PMOCS is better
than HMOCS regarding the convergence.

4.3 5G Network Optimization

More convenient cellular networks is coming with the introduction of 5G networks. Over the
past few decades, various methods have been proposed in the technological preparations for
5G network. Massive multiple-input multiple-output (MIMO) system is one of key enabler of
5G network. Massive MIMO is proposed based on the idea of deploying large arrays with a lot
of active antennas at base stations (BSs) and serve limited number of users. Massive MIMO is
robust to the distortions caused by hardware imperfections[57].

The aim of this section is to optimize the downlink transmission of a missive MIMO
system[21], which has two conflicting objectives, high average user rates and high energy
efficiency. As Fig. 8 shows, assume there are N antennas and K single-antenna users.
B =10MHz indicates the bandwidth. The emitted power per BS is P Watt. o® =107*W is the

average noise power. The size of each cell is 250x 250 meters. That is to say, A=0.25’km”.
L 250meters L

[ I

N transmit antennas
\

=
(=)

o
7 .0

K uniformly distributed users

Fig. 8. lllustration of missive MIMO system



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 7, July 2020 2809

Average user rate ( f,) and energy efficiency ( f,)[58] are defined with the following

equations:

st.P

otal —

n:sa-%om% 1+-K

ZN-K)
o’A, +PA,

(8)

C .
L NC, +KC, +—2= , c,
n L

where A, =1.72x10° , A, =054 [59], C, =05W , C, =03W, C,=10W |,

C B

precoding

=3K°N T L =12.8Gflops /W . From Eq.(8), it can be seen that the average user

rate should be as high as possible, while energy efficiency should be as low as possible.
The variables to be optimized are K, N and P, and they follows the following constraints:

x=[K N P]
1<k <N
2
©)
sti2<N<N,_,
0<P<NP,_

where N . =500 and P, =20W .

To test the performance of PMOCS on practical problems, PMOCS, HMOCS, NNIA,
NSGA-1I and MOPSO are applied to the 5G network optimization. All the parameters remains
the same as illustrated above. Maximal iteration is set to 2000. Fig. 9 plots the comparison

results.
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Fig. 9. Comparison of experimental results on the 5G network optimization problem

From Fig. 9, we can observe that the Pareto front obtained by PMOCS is able to cover the
most area. However, compared with PMOCS, NSGA-II performs less satisfied due to the
discontinuous Pareto front. Further, HMOCS is relatively better than NNIA and MOPSO in

terms of final Pareto fronts. In summary, PMOCS is empirically promising in tackling
practical problems.

5. Conclusion

In this paper, to tackle the 5G network optimization problem, PMOCS is proposed. This paper
firstly upgrades the global search manner to a new version, which is able to generate the
evolutionary pressure to the ideal Pareto front. Then, the local search manner is improved to
guide the population to various promising areas. The experimental results on three test suits
show that PMOCS is better than other comparison methods. Further, the experiment results on
the 5G network optimization problem demonstrate that PMOCS is more effective in
comparison with other methods. Next work will concentrate on the further improvement of
PMOCS.
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