DOI QR코드

DOI QR Code

미세먼지와 식물의 상호작용: 국내외 연구동향 및 생태적 영향 고찰

Interactions between Particulate Matter and Plants: Focusing on Current Research Status and Ecological Impacts

  • 손민정 (경상대학교 생물교육과) ;
  • 남기정 (경상대학교 농업생명과학연구원)
  • Son, Min-Jeong (Department of Biology Education, Gyeongsang National University) ;
  • Nam, Ki-Jung (Institute of Agriculture & Life Science, Gyeongsang National University)
  • 투고 : 2020.12.01
  • 심사 : 2020.12.03
  • 발행 : 2020.12.31

초록

대기 중 미세먼지가 환경과 인간의 공중 보건에 악영향을 미치고 있다는 사실은 점점 명확해지고 있다. 미세먼지가 식물의 잎에 침착, 흡수되므로 식물이 미세먼지를 제거하는 바이오필터로 활용하기 위한 연구들이 활발히 진행되고 있다. 또한, 식물에 흡수된 미세먼지는 식물에 다양한 생리적, 형태적 영향을 미치게 된다. 본 연구는 식물과 미세먼지간의 상호작용에 대해 국내외에서 수행되어온 연구들의 방법과 결과를 특히 생태적 관점에서 종합 정리하였다.

Airborne particulate matter (APM) is increasingly recognized that it has adverse impacts on environment and human public health. As plants can have a potential to reduce APM significantly by its deposition on leaves, considerable efforts has been made to use them as a biofilter. However, APM accumulation on plants can induce physiological and morphological alterations in plants. The present review aimed to synthesize the methods and results of the recent relevant research on interactions between plants and APM, especially from an ecological perspective, and briefly took into account the current status in Korea on this actively increasing research area.

키워드

참고문헌

  1. Baro, F., L. Chaparro, E. Gomez-Baggethun, J. Langemeyer, D.J. Nowak and J. Terradas. 2014. Contribution of Ecosystem Services to Air Quality and Climate Change Mitigation Policies: The Case of Urban Forests in Barcelona, Spain. AMBIO 43: 466-479. https://doi.org/10.1007/s13280-014-0507-x
  2. Bebkiewicz, K., Z. Chlopek, J. Lasocki, K. Szczepanski and M. Zimakowska-Laskowska. 2020. The Inventory of Pollutants Hazardous to the Health of Living Organisms, Emitted by Road Transport in Poland between 1990 and 2017. Sustainability 12: 5387. https://doi.org/10.3390/su12135387
  3. Bennett, J.E., H. Tamura-Wicks, R.M. Parks, R.T. Burnett, C.A.P. III, M.J. Bechle, J.D. Marshall, G. Danaei and M. Ezzati. 2019. Particulate matter air pollution and national and county life expectancy loss in the USA: A spatiotemporal analysis. PLOS Medicine 16: e1002856. https://doi.org/10.1371/journal.pmed.1002856
  4. Bottalico. 2016. Air Pollution Removal by Green Infrastructures and Urban Forests in the City of Florence. Agriculture and Agricultural Science Procedia 8: 243-251. https://doi.org/10.1016/j.aaspro.2016.02.099
  5. Bottalico, F., D. Travaglini, G. Chirici, V. Garfi, F. Giannetti, A. De Marco, S. Fares, M. Marchetti, S. Nocentini, E. Paoletti, F. Salbitano and G. Sanesi. 2017. A spatially-explicit method to assess the dry deposition of air pollution by urban forests in the city of Florence, Italy. Urban Forestry & Urban Greening 27: 221-234. https://doi.org/10.1016/j.ufug.2017.08.013
  6. Cai, M., Z. Xin and X. Yu. 2019. Particulate matter transported from urban greening plants during precipitation events in Beijing, China. Environmental Pollution 252: 1648-1658. https://doi.org/10.1016/j.envpol.2019.06.119
  7. Chiam, Z., X.P. Song, H.R. Lai and H.T.W. Tan. 2019. Particulate matter mitigation via plants: Understanding complex relationships with leaf traits. Science of The Total Environment 688: 398-408. https://doi.org/10.1016/j.scitotenv.2019.06.263
  8. Cho, M.G., E.J. Jin, E.J. Bae, K.S. Lee, H.S. Moon and M.R. Huh. 2017. Absorption ability of particulate matter in leaves of street trees in Jinju City. Journal of People, Plants and Environment 20: 431-440. https://doi.org/10.11628/ksppe.2017.20.5.431
  9. Choe, B.-H. and T.-H. Kim. 2019. Study on reduction of particulate matter (PM2.5, PM10) by vegetation bio-filters according to air conditioning wind volume. Proceedings of the Korean Institute of Landscape Architecture Conference. pp. 85-86.
  10. Cong, L., H. Zhang, J. Zhai, G. Yan, Y. Wu, Y. Wang, W. Ma, Z. Zhang and P. Chen. 2020. The blocking effect of atmospheric particles by forest and wetland at different air quality grades in Beijing China. Environmental Technology 41: 2266-2276. https://doi.org/10.1080/09593330.2018.1561759
  11. Feldhaar, H. and O. Otti. 2020. Pollutants and Their Interaction with Diseases of Social Hymenoptera. Insects 11: 153. https://doi.org/10.3390/insects11030153
  12. Fiordelisi, A., P. Piscitelli, B. Trimarco, E. Coscioni, G. Iaccarino and D. Sorriento. 2017. The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Failure Reviews 22: 337-347. https://doi.org/10.1007/s10741-017-9606-7
  13. Flanders, S.E. 1941. Dust as an Inhibiting Factor in the Reproduction of Insects. Journal of Economic Entomology 34: 470-472. https://doi.org/10.1093/jee/34.3.470
  14. Grantz, D.A., J.H.B. Garner and D.W. Johnson. 2003. Ecological effects of particulate matter. Environment International 29: 213-239. https://doi.org/10.1016/S0160-4120(02)00181-2
  15. Guerrero-Leiva, N., S.A. Castro, M.A. Rubio and C. Ortiz-Calderon. 2016. Retention of Atmospheric Particulate by Three Woody Ornamental Species in Santiago, Chile. Water, Air, & Soil Pollution 227: 435. https://doi.org/10.1007/s11270-016-3124-4
  16. Guo, L.-C., L.-J. Bao, J.-W. She and E.Y. Zeng. 2014. Significance of wet deposition to removal of atmospheric particulate matter and polycyclic aromatic hydrocarbons: A case study in Guangzhou, China. Atmospheric Environment 83: 136-144. https://doi.org/10.1016/j.atmosenv.2013.11.012
  17. Hartono, D., B. Lioe, Y. Zhang, B. Li and J. Yu. 2017. Impacts of particulate matter(PM2.5) on the behavior of freshwater snail Parafossarulus striatulus. Scientific Reports 7: 644. https://doi.org/10.1038/s41598-017-00449-5
  18. Hartono, H. 2017. Impacts of particulate matter (PM2.5) on the behavior of freshwater snail Parafossarulus striatulus. Scientific Reports 7: 644. https://doi.org/10.1038/s41598-017-00449-5
  19. Hatami, Z., P.R. Moghaddam, A. Rashki, M.N. Mahallati and B.H. Khaniani. 2018. Effects of desert dust on yield and yield components of cowpea (Vigna unguiculata L.). Archives of Agronomy and Soil Science 64: 1446-1458. https://doi.org/10.1080/03650340.2018.1440081
  20. Hirano, T., M. Kiyota and I. Aiga. 1995. Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environmental Pollution 89: 255-261. https://doi.org/10.1016/0269-7491(94)00075-O
  21. Honour, S.L., J.N.B. Bell, T.W. Ashenden, J.N. Cape and S.A. Power. 2009. Responses of herbaceous plants to urban air pollution: Effects on growth, phenology and leaf surface characteristics. Environmental Pollution 157: 1279-1286. https://doi.org/10.1016/j.envpol.2008.11.049
  22. Hyde, P. and A. Mahalov. 2020. Contribution of bioaerosols to airborne particulate matter. Journal of the Air & Waste Management Association 70: 71-77. https://doi.org/10.1080/10962247.2019.1629360
  23. Irga, P.J., M.D. Burchett and F.R. Torpy. 2015. Does urban forestry have a quantitative effect on ambient air quality in an urban environment? Atmospheric Environment 120: 173-181. https://doi.org/10.1016/j.atmosenv.2015.08.050
  24. Ji, Y., Q. Li, R. Ye, K. Tian and X. Tian. 2020. The Impact of Water-Soluble Inorganic Ions in Particulate Matter(PM2.5) on Litter Decomposition in Chinese Subtropical Forests. Forests 11: 238. https://doi.org/10.3390/f11020238
  25. Jo, E.-J., W.-S. Lee, H.-Y. Jo, C.-H. Kim, J.-S. Eom, J.-H. Mok, M.-H. Kim, K. Lee, K.-U. Kim, M.-K. Lee and H.-K. Park. 2017. Effects of particulate matter on respiratory disease and the impact of meteorological factors in Busan, Korea. Respiratory Medicine 124: 79-87. https://doi.org/10.1016/j.rmed.2017.02.010
  26. Jung, M.-I., S.-W. Son, H.C. Kim, S.-W. Kim, R.J. Park and D. Chen. 2019. Contrasting synoptic weather patterns between non-dust high particulate matter events and Asian dust events in Seoul, South Korea. Atmospheric Environment 214: 116864. https://doi.org/10.1016/j.atmosenv.2019.116864
  27. Kampa, M. and E. Castanas. 2008. Human health effects of air pollution. Environmental Pollution 151: 362-367. https://doi.org/10.1016/j.envpol.2007.06.012
  28. Khan, T.A., G.K. Ramegowda and M.Y. Dar. 2013. Effect of Road Dust Pollution in Mulberry on Silkworm Performance in Kashmir valley, India. Research Journal of Agricultural Sciences 4: 501-506.
  29. Kwak, M.J., J.K. Lee, S. Park, H. Kim, Y.J. Lim, K.-A. Lee, J. Son, C.-Y. Oh, I. Kim and S.Y. Woo. 2020. Surface-Based Analysis of Leaf Microstructures for Adsorbing and Retaining Capability of Airborne Particulate Matter in Ten Woody Species. Forests 11: 946. https://doi.org/10.3390/f11090946
  30. Kwon, K.-J. and B.-J. Park. 2018. Particulate Matter Removal of Indoor Plants, Dieffenbachia amoena "Marianne" and Spathiphyllum spp. according to Light Intensity. Journal of the Korean Institute of Landscape Architecture 46: 62-68. https://doi.org/10.9715/KILA.2018.46.2.062
  31. Lee, C.H., B. Choi and M.Y. Chun. 2015. Stabilization of Soil Moisture and Improvement of Indoor Air Quality by a Plant-Biofilter Integration System. Horticultural Science & Technology 33: 751-762. https://doi.org/10.7235/hort.2015.15027
  32. Lee, M.A., L. Davies and S.A. Power. 2012. Effects of roads on adjacent plant community composition and ecosystem function: An example from three calcareous ecosystems. Environmental Pollution 163: 273-280. https://doi.org/10.1016/j.envpol.2011.12.038
  33. Leonard, R.J., C. McArthur and D.F. Hochuli. 2016. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban Forestry & Urban Greening 20: 249-253. https://doi.org/10.1016/j.ufug.2016.09.008
  34. Li, G., L. Wang, F. Sun, Y. Wang, H. Wu, Z. Hu, B. Zhang, L. Yu, H. Yan and F. Shao. 2019a. Capacity of Landscaping Plants to Accumulate Airborne Particulate Matter in Hangzhou, China. Polish Journal of Environmental Studies 29: 153-161. https://doi.org/10.15244/pjoes/101606
  35. Li, Y., Y. Wang, B. Wang, Y. Wang and W. Yu. 2019b. The Response of Plant Photosynthesis and Stomatal Conductance to Fine Particulate Matter (PM2.5) based on Leaf Factors Analyzing. Journal of Plant Biology 62: 120-128. https://doi.org/10.1007/s12374-018-0254-9
  36. Litschke, T. and W. Kuttler. 2008. On the reduction of urban particle concentration by vegetation - a review. Meteorologische Zeitschrift 17: 229-240. https://doi.org/10.1127/0941-2948/2008/0284
  37. Liu, H., X. Zhang, H. Zhang, X. Yao, M. Zhou, J. Wang, Z. He, H. Zhang, L. Lou, W. Mao, P. Zheng and B. Hu. 2018. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter. Environmental Pollution 233: 483-493. https://doi.org/10.1016/j.envpol.2017.10.070
  38. Liu, L.-L., C.-Y. Hsieh, M.-Y. Kuo, C. Chen, Y.-H. Shau, H.-K. Lui, C.-S. Yuan and C.-T. A. Chen. 2020. Evidence for Fossil Fuel PM1 Accumulation in Marine Biota. Environmental Science & Technology 54: 4068-4078. https://doi.org/10.1021/acs.est.9b06976
  39. Lukowski, A., R. Popek, R. Jagiello, E. Maderek and P. Karolewski. 2018. Particulate matter on two Prunus spp. decreases survival and performance of the folivorous beetle Gonioctena quinquepunctata. Environmental Science and Pollution Research 25: 16629-16639. https://doi.org/10.1007/s11356-018-1842-4
  40. Maitra, S. and D.S. Jyethi. 2020. Particulate matter removal by forest cover in Delhi. Arboricultural Journal 42: 36-49. https://doi.org/10.1080/03071375.2020.1746541
  41. Maki, T., A. Ishikawa, T. Mastunaga, S.B. Pointing, Y. Saito, T. Kasai, K. Watanabe, K. Aoki, A. Horiuchi, K.C. Lee, H. Hasegawa and Y. Iwasaka. 2016. Atmospheric aerosol deposition influences marine microbial communities in oligotrophic surface waters of the western Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers 118: 37-45. https://doi.org/10.1016/j.dsr.2016.10.002
  42. Marando, F., E. Salvatori, L. Fusaro and F. Manes. 2016. Removal of PM10 by Forests as a Nature-Based Solution for Air Quality Improvement in the Metropolitan City of Rome. Forests 7: 150. https://doi.org/10.3390/f7070150
  43. Mohan, M.S. 2016. An overview of particulate dry deposition: measuring methods, deposition velocity and controlling factors. International Journal of Environmental Science and Technology 13: 387-402. https://doi.org/10.1007/s13762-015-0898-7
  44. Nagajyoti, P.C., K.D. Lee and T.V.M. Sreekanth. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters 8: 199-216. https://doi.org/10.1007/s10311-010-0297-8
  45. Naidoo, G. and D. Chirkoot. 2004. The effects of coal dust on photosynthetic performance of the mangrove, Avicennia marina in Richards Bay, South Africa. Environmental Pollution 127: 359-366. https://doi.org/10.1016/j.envpol.2003.08.018
  46. Negri, I., G. Capitani and M. Pellecchia. 2020. Airborne particulate matter and health effects on bees: A correlation does not indicate causation. Proceedings of the National Academy of Sciences 117: 26576-26577. https://doi.org/10.1073/pnas.2017536117
  47. Nowak, D.J., S. Hirabayashi, A. Bodine and E. Greenfield. 2014. Tree and forest effects on air quality and human health in the United States. Environmental Pollution 193: 119-129. https://doi.org/10.1016/j.envpol.2014.05.028
  48. O'Day. 2020. Phosphorus Speciation in Atmospherically Deposited Particulate Matter and Implications for Terrestrial Ecosystem Productivity. Environmental Science & Technology 54: 4984-4994. https://doi.org/10.1021/acs.est.9b06150
  49. Paull, N.J., D. Krix, P.J. Irga and F.R. Torpy. 2020. Airborne particulate matter accumulation on common green wall plants. International Journal of Phytoremediation 22: 594-606. https://doi.org/10.1080/15226514.2019.1696744
  50. Pavlik, M., D. Pavlikova, V. Zemanova, F. Hnilicka, V. Urbanova and J. Szakova. 2012. Trace elements present in airborne particulate matter-Stressors of plant metabolism. Ecotoxicology and Environmental Safety 79: 101-107. https://doi.org/10.1016/j.ecoenv.2011.12.009
  51. Pope, C.A., M. Ezzati and D.W. Dockery. 2009. Fine-Particulate Air Pollution and Life Expectancy in the United States. New England Journal of Medicine 360: 376-386. https://doi.org/10.1056/NEJMsa0805646
  52. Popek, R., A. Lukowski, C. Bates and J. Oleksyn. 2017. Accumulation of particulate matter, heavy metals, and polycyclic aromatic hydrocarbons on the leaves of Tilia cordata Mill. in five Polish cities with different levels of air pollution. International Journal of Phytoremediation 19: 1134-1141. https://doi.org/10.1080/15226514.2017.1328394
  53. Pourkhabbaz, A., N. Rastin, A. Olbrich, R. Langenfeld-Heyser and A. Polle. 2010. Influence of Environmental Pollution on Leaf Properties of Urban Plane Trees, Platanus orientalis L. Bulletin of Environmental Contamination and Toxicology 85: 251-255. https://doi.org/10.1007/s00128-010-0047-4
  54. Rai, A., K. Kulshreshtha, P.K. Srivastava and C.S. Mohanty. 2010. Leaf surface structure alterations due to particulate pollution in some common plants. The Environmentalist 30: 18-23. https://doi.org/10.1007/s10669-009-9238-0
  55. Rai, P.K. 2016. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicology and Environmental Safety 129: 120-136. https://doi.org/10.1016/j.ecoenv.2016.03.012
  56. Rai, P.K., B.M. Chutia and S.K. Patil. 2014. Monitoring of spatial variations of particulate matter (PM) pollution through bio-magnetic aspects of roadside plant leaves in an Indo-Burma hot spot region. Urban Forestry & Urban Greening 13: 761-770. https://doi.org/10.1016/j.ufug.2014.05.010
  57. Robinson, M.F., J. Heath and T.A. Mansfield. 1998. Disturbances in stomatal behaviour caused by air pollutants. Journal of Experimental Botany 49: 461-469. https://doi.org/10.1093/jxb/49.Special_Issue.461
  58. Ryu, J., J.J. Kim, H. Byeon, T. Go and S.J. Lee. 2019. Removal of fine particulate matter (PM2.5) via atmospheric humidity caused by evapotranspiration. Environmental Pollution 245: 253-259. https://doi.org/10.1016/j.envpol.2018.11.004
  59. Saebo, A., R. Popek, B. Nawrot, H.M. Hanslin, H. Gawronska and S.W. Gawronski. 2012. Plant species differences in particulate matter accumulation on leaf surfaces. Science of The Total Environment 427-428: 347-354. https://doi.org/10.1016/j.scitotenv.2012.03.084
  60. Sarkodie, S.A., V. Strezov, Y. Jiang and T. Evans. 2019. Proximate determinants of particulate matter (PM2.5) emission, mortality and life expectancy in Europe, Central Asia, Australia, Canada and the US. Science of The Total Environment 683: 489-497. https://doi.org/10.1016/j.scitotenv.2019.05.278
  61. Schultz, A.A., J.J. Schauer and K.M.C. Malecki. 2017. Allergic disease associations with regional and localized estimates of air pollution. Environmental Research 155: 77-85. https://doi.org/10.1016/j.envres.2017.01.039
  62. Selmi, W., C. Weber, E. Riviere, N. Blond, L. Mehdi and D. Nowak. 2016. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban Forestry & Urban Greening 17: 192-201. https://doi.org/10.1016/j.ufug.2016.04.010
  63. Setala, H., V. Viippola, A.-L. Rantalainen, A. Pennanen and V. Yli-Pelkonen. 2013. Does urban vegetation mitigate air pollution in northern conditions? Environmental Pollution 183: 104-112. https://doi.org/10.1016/j.envpol.2012.11.010
  64. Shah, K., N. An, W. Ma, G. Ara, K. Ali, S. Kamanova, X. Zuo, M. Han, X. Ren and L. Xing. 2020. Chronic cement dust load induce novel damages in foliage and buds of Malus domestica. Scientific Reports 10: 12186. https://doi.org/10.1038/s41598-020-68902-6
  65. Shahid, M., C. Dumat, S. Khalid, E. Schreck, T. Xiong and N.K. Niazi. 2017. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. Journal of Hazardous Materials 325: 36-58. https://doi.org/10.1016/j.jhazmat.2016.11.063
  66. Shao, F., L. Wang, F. Sun, G. Li, L. Yu, Y. Wang, X. Zeng, H. Yan, L. Dong and Z. Bao. 2019. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China. Science of The Total Environment 652: 939-951. https://doi.org/10.1016/j.scitotenv.2018.10.182
  67. Tallis, M., G. Taylor, D. Sinnett and P. Freer-Smith. 2011. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landscape and Urban Planning 103: 129-138. https://doi.org/10.1016/j.landurbplan.2011.07.003
  68. Thimmegowda, G.G., S. Mullen, K. Sottilare, A. Sharma, S.S. Mohanta, A. Brockmann, P.S. Dhandapany and S.B. Olsson. 2020. A field-based quantitative analysis of sublethal effects of air pollution on pollinators. Proceedings of the National Academy of Sciences of the United States of America 117: 20653-20661. https://doi.org/10.1073/pnas.2009074117
  69. Vanderstock, A.M., T. Latty, R.J. Leonard, D.F. Hochuli. 2018. Mines over matter: Effects of foliar particulate matter on the herbivorous insect, Helicoverpa armigera. Journal of Applied Entomology 143: 77-87.
  70. Wang, J., Q. Yin, S. Tong, Z. Ren, M. Hu and H. Zhang. 2017. Prolonged continuous exposure to high fine particulate matter associated with cardiovascular and respiratory disease mortality in Beijing, China. Atmospheric Environment 168: 1-7. https://doi.org/10.1016/j.atmosenv.2017.08.060
  71. Welsch, H. 2006. Environment and happiness: Valuation of air pollution using life satisfaction data. Ecological Economics 58: 801-813. https://doi.org/10.1016/j.ecolecon.2005.09.006
  72. Wu, J., Y. Wang, S. Qiu and J. Peng. 2019. Using the modified i-Tree Eco model to quantify air pollution removal by urban vegetation. Science of The Total Environment 688: 673-683. https://doi.org/10.1016/j.scitotenv.2019.05.437
  73. Wu, W. and Y. Zhang. 2018. Effects of particulate matter(PM2.5) and associated acidity on ecosystem functioning: response of leaf litter breakdown. Environmental Science and Pollution Research 25: 30720-30727. https://doi.org/10.1007/s11356-018-2922-1
  74. Xu, X., X. Yu, L. Bao and A.R. Desai. 2019. Size distribution of particulate matter in runoff from different leaf surfaces during controlled rainfall processes. Environmental Pollution 255: 113234. https://doi.org/10.1016/j.envpol.2019.113234
  75. Yoo, S.-Y., T. Kim, S. Ham, S. Choi and C.-R. Park. 2020. Importance of Urban Green at Reduction of Particulate Matters in Sihwa Industrial Complex, Korea. Sustainability 12: 7647. https://doi.org/10.3390/su12187647
  76. Zhang, C., B. Huang, J.D.A. Piper and R. Luo. 2008. Biomonitoring of atmospheric particulate matter using magnetic properties of Salix matsudana tree ring cores. Science of The Total Environment 393: 177-190. https://doi.org/10.1016/j.scitotenv.2007.12.032
  77. Zhang, W., Y. Zhang, J. Gong, B. Yang, Z. Zhang, B. Wang, C. Zhu, J. Shi and K. Yue. 2020. Comparison of the suitability of plant species for greenbelt construction based on particulate matter capture capacity, air pollution tolerance index, and antioxidant system. Environmental Pollution 263: 114615. https://doi.org/10.1016/j.envpol.2020.114615
  78. Zhang, W., Z. Zhang, H. Meng and T. Zhang. 2018. How Does Leaf Surface Micromorphology of Different Trees Impact Their Ability to Capture Particulate Matter? Forests 9: 681. https://doi.org/10.3390/f9110681
  79. Zhang, X. 2020. Effects of the leaf functional traits of coniferous and broadleaved trees in subtropical monsoon regions on PM2.5 dry deposition velocities. Environmental Pollution 265: 11845.
  80. Zhang, Z., J. Liu, Y. Wu, G. Yan, L. Zhu and X. Yu. 2017. Multiscale comparison of the fine particle removal capacity of urban forests and wetlands. Scientific Reports 7: 46214. https://doi.org/10.1038/srep46214
  81. Zhao, P., W. Lu, Y. Hong, J. Chen, S. Dong and Q. Huang. 2020. Long-term wet precipitation of PM2.5 disturbed the gut microbiome and inhibited the growth of marine medaka Oryzias melastigma. Science of The Total Environment 755: 142512.