DOI QR코드

DOI QR Code

Enhancing the Effect of Aronia Extract on Hyaluronic Acid Synthesis through Liposome Formation

  • Received : 2020.07.24
  • Accepted : 2020.08.07
  • Published : 2020.08.31

Abstract

Background and objective: Aronia melanocarpa, called black chokeberry, is a natural product belonging to the family rosaceae, and is known to contain polyphenolic antioxidants including cyanidin-3-galactoside, cyanidin-3-arabinoside, cyanidin-3-xyloside, and cyanidin-3-glucoside Because of the abundance of anthocyanins, Aronia has been studied to be used in various industries. Methods: Aronia melanocarpa extract was treated 24 hours a day to RAW 264.7 cells with inflammations induced by LPS. After extracting total RNA, the amount of inflammatory cytokine expression was measured using RT-PCR. After processing the Aronia liposome using Aronia extract and the layer-by-layer electrostatic deposition method in keratinocyte cells at the same time, we checked the synthesis of Hyaluronic acid enhanced through the formation of Aronia liposome using ELISA. Results: The treatment of Aronia extract in inflammation-induced RAW 264.7 cells conducted to check the anti-inflammatory efficacy of Aronia extract inhibited inflammatory cytokines including TLR4, TNF-α, IL-1β, COX-2, and iNOS and increased the mRNA expression of HAS2 genes related to moisturizing. Based on the anti-inflammatory and moisturizing effect of Aronia extract, the Aronia liposome technology was introduced to Aronia extract to produce Aronia liposome. Conclusion: The liposome formation of Aronia extract is expected to be used as a functional material in treating various inflammatory skin diseases by controlling the moisture content of the corneocytes by increasing the expression rate of genes associated with the synthesis of hyaluronic acid, while retaining the efficacy of its components.

Keywords

References

  1. Adams, J.L. and C.J. Czuprynski. 1994. Mycobacterial cell wall components induce the production of TNF-α, IL-1, and IL-6 by bovine monocytes and the murine macrophage cell line RAW 264.7. Microb. Pathog. 16(6):401-411. https://doi.org/10.1006/mpat.1994.1040
  2. An, S.M., H.G. Kim, E.J. Choi, H.H. Hwang, E.S. Lee, J.H. Beak, Y.C. Boo, and J.S. Koh. 2014. Screening for anti-inflammatory activities in extracts from Korean herb medicines. J. Soc. Cosmet. Sci. Korea 40(1):95-108. https://doi.org/10.15230/SCSK.2014.40.1.95
  3. Aono, K., K. Isobe, K. Kiuchi, Z.H. Fan, M. Ito, A. Takeuchi, M. Miyachi, I. Nakashima, and Y. Nimura. 1997. In vitro and in vivo expression of inducible nitric oxide synthase during experimental endotoxemia: involvement of other cytokines. J. Cell. Biochem. 65(3):349-358. https://doi.o rg/10.1002/(SICI)1097-4644(19970601)65:3<349::AID-JCB5>3.0.CO;2-S
  4. Chung, J.Y. and H.S. Han. 2014. The recent trend of percutaneous absorption used in cosmetics. Korean J. Aesthe. Cosmetol. 12(5):597-605.
  5. Frosch, P.J. and A.M. Kligman. 1979. The soap chamber test: A new method for assessing the irritancy of soaps. J. Am. Acad. Dermatol. 1(1):35-41. https://doi.org/10.1016/s0190-9622(79)70001-6
  6. Green, L.C., J.L. Reade, and C.F. Ware. 1984. Rapid colorimetric assay for cell viability: Application to the quantitation of cytotoxic and growth inhibitory lymphokines. J. Immunol. Methods 70(2):257-268. https://doi.org/10.1016/0022-1759(84)90190-X.
  7. Kamsteeg, M., P.A.M. Jansen, I.M.J.J. van Vlijmen-Willems, P.E.J. van Erp, D. Rodijk-Olthuis, P.G. van der Valk, T. Feuth, P.L.J.M. Zeeuwen, and J. Schalkwijk. 2010. Molecular diagnostics of psoriasis, atopic dermatitis, allergic contact dermatitis and irritant contact dermatitis. Br. J. Dermatol. 162(3):568-578. https://doi.org/10.1111/j.1365-2133.2009.09547.x
  8. Lee, E.G., B.M. Mickle-Kawar, and R.M Gallucci. 2013. IL-6 deficiency exacerbates skin inflammation in a murine model of irritant dermatitis. J. Immunotoxicol. 10(2):192-200. https://doi.org/10.3109/1547691X.2012.707700
  9. Lee, H.M., J.H. Choi, C.S. Choi, S.J. Hwang, and H.L. Lee. 2000. Expression of M M P-9 and TIM P-1 in the nasal mucosa of allergic rhinitis. Korean J. Otolaryngol. 43:604-609.
  10. Lee, J.T., K.J. Woo, and T.K. Kwon. 2010. Effect of sulforaphane on LPS-induced matrix metalloproteinase-9 (MMP-9) expression. J. Life Sci. 20(2):275-280. https://doi.org/10.5352/JLS.2010.20.2.275
  11. Lim, J.D., H.S. Cha, M.G. Choung, R.N. Choi, D.J. Choi, and A.R. Youn. 2014. Antioxidant activities of acidic ethanol extract and the anthocyanin rich fraction from Aronia melanocarpa. Korean J. Food Cook. Sci. 30(5):573-578. https://doi.org/10.9724/kfcs.2014.30.5
  12. Lim, J.W., Y.J. Cho, D.H. Lee, B.C. Jung, H.S. Kang, T.J. Kim, K.J. Rhee, T.U. Kim, and Y.S. Kim. 2012. Upregulation of MMP is mediated by MEK1 activation during differentiation of monocyte into macrophage. J. Exp. Biomed. Sci. 18(2):104-111.
  13. Seneschal, J., E. Kubica, L. Boursault, J. Stokkermans, C. Labreze, B. Milpied, K. Ezzedine, A. Taieb. 2012. Exogenous inflammatory acne due to combined application of cosmetic and facial rubbing. Dermatology 224(3):221-223. https://doi.org/10.1159/000338694
  14. Serra, R., A.G. Al-Saidi, N. Angelov, and S. Nares. 2010. Suppression of LPS-induced matrix-metalloproteinase responses in macrophages exposed to phenytoin and its metabolite, 5-(p-hydroxyphenyl-), 5-phenylhydantoin. J. Inflamm. 7:48. https://doi.org/10.1186/1476-9255-7-48
  15. Slimestad, R., K. Torskangerpoll, H.S. Nateland, T. Johannessen, and N.H. Giske. 2005. Flavonoids from black chokeberries, Aronia melanocarpa. J. Food Compos. Anal. 18(1):61-68. https://doi.org/10.1016/j.jfca.2003.12.003
  16. Steenport, M., K.M. Faisal Khan, B. Du, S.E. Barnhard, A.J. Dannenberg, and D. J. Falcone. 2009. Matrix metalloproteinase (MMP)-1 and MMP-3 induce macrophage MMP-9: Evidence for the role of TNF-α and cyclooxygenase-2. J. Immunol. 183(12):8119-8127. https://doi.org/10.4049/jimmunol.0901925
  17. Yamamoto, Y., P. He, T.W. Klein, and H. Friedman. 1994. Endotoxin induced cytotoxicity of macrophages is due to apoptosis caused by nitric oxide production. J. Endotoxin Res. 1(3):181-187. https://doi.org/10.1177/096805199400100307
  18. Zheng, W. and S.Y. Wang. 2003. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J. Agric. Food Chem. 51(2):502-509. https://doi.org/10.1021/jf020728u