DOI QR코드

DOI QR Code

넓은 비행영역을 고려한 2D 스크램제트 흡입구 설계 방법

Design Method of 2D Scramjet Inlet Considering Wide Flight Range

  • Lee, Jaewon (Department of Mechanical Engineering, Sejong University) ;
  • Kang, Sang Hun (Department of Aerospace System Engineering, Sejong University)
  • 투고 : 2020.10.14
  • 심사 : 2020.11.21
  • 발행 : 2020.12.31

초록

넓은 비행영역에서 스크램제트 엔진의 운용을 위해, 비행 조건의 변화에도 안정적인 성능을 나타내는 흡입구의 설계가 중요하다. 본 연구에서는 마하수 4~6, 받음각 -6도~6도의 넓은 비행영역에서 안정적인 성능을 얻기 위한 2D 고정형 흡입구의 설계 방법에 대한 연구를 수행하였다. 설계 방법 및 설계 주안점에 대해 제시한 후, 넓은 비행영역에서 높은 전압력 회복율과 유량 포획율을 갖는 흡입구를 설계함에 있어 가장 중요한 설계요소인 초기 압축각도와 비행 마하수 설계점에 따른 성능예측 및 분석을 수행하였다. 분석 결과를 바탕으로 넓은 비행영역에서 안정적인 성능을 나타내기 위한 두 가지 주요 설계요소의 선정기준을 제시하였다.

For the operation of the scramjet engine in the wide flight range, the design of the inlet must show stable performance in various flight conditions. In this study, the design methods of a 2D fixed inlet for stable performance in wide flight ranges of Mach number 4 to 6 and angle -6° to 6°, is performed. After proposing the design method and design focus, performance prediction and analysis were performed by various initial compression angles and design Mach numbers, which are essential design factors in total pressure recovery and inlet capture area ratio in the wide flight range. Based on the analysis results, we present the selection criteria for the two main design elements to represent stable performance in the wide flight range.

키워드

과제정보

본 연구는 스크램제트 복합추진시스템 특화연구실 과제(과제코드 : 16-106-501-035)의 지원을 받아 수행하였으며, 이에 감사드립니다.

참고문헌

  1. Murthy, S.N.B. and Curran, E.T., "Scramjet Propulsion," Progress in Astronautics and Aeronautics, Vol. 189, pp. 447-511, 2001.
  2. Dou, L., Gao, J., Zong, Q. and Ding, Z., "Modeling and Switching Control of AirBreathing Hypersonic Vehicle with Variable Geometry Inlet," Journal of the Franklin Institute, Vol. 355, Issue 15, pp. 6904-6926, 2018. https://doi.org/10.1016/j.jfranklin.2018.07.007
  3. Dalle, D.J., Torrez, S.M. and Driscoll, J.F., "Performance Analysis of Variable-Geo metry Scramjet Inlets Using a Low-Order Model," 47th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, San Diego, U.S.A., AIAA 2011-5756, August 2011.
  4. Kim, J.W. and Kwon, O.J., "Numerical Investigation on Performance Characteristics of Supersonic Intake at Various Angles of Attack," 2015 Korean Society for Aeronautical & Space Sciences Fall Conference, pp. 66-69, Nov. 2015.
  5. Torrez, S.M., Driscoll, J.F., Dalle, D.J. and Fotia, M.L., "Preliminary Design Methodolo gy for Hypersonic Engine Flowpaths," 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany, AIAA 2009-7289, Oct. 2009.
  6. Zhang, K., "Hypersonic Curved Compress ion Inlet and Its Inverse Design," Advanced Topics in Science and Technology in China, Vol. 56, Springer, Singapore, pp. 281-325, 2020. https://doi.org/10.1007/978-981-15-0727-4_9
  7. Heiser, W.H., Pratt, D.T., Daley, D.H. and Mehta, U.B., Hypersonic Airbreathing Propuls ion, AIAA Education Series, American Institute of Aeronautics and Astronautics, Inc., Washington D.C, U.S.A., Ch. 5, 1994.
  8. Oswatitsch, K., "Pressure Recovery for Missiles with Reaction Propulsion at High Supersonic Speeds(the Efficiency of Shock Diffusers)," NACA TM 1140, 1947.
  9. Smart, M.K., "Optimization of Two-Dimens ional Scramjet Inlets," Journal of Aircraft, Vol. 36, No. 2, pp. 430-433, 1999. https://doi.org/10.2514/2.2448
  10. Raj, N.O.P. and Venkatasubbaiaha, K., "A New Approach for the Design of Hyper sonic Scramjet Inlets," Physics of Fluids, Vol. 24, Issue. 8, pp. 1-15, 2012.
  11. Smart, M.K., "How Much Compression Should a Scramjet Inlet Do?," AIAA Journal, Vol. 50, No. 3, pp. 610-619, 2012. https://doi.org/10.2514/1.J051281