DOI QR코드

DOI QR Code

연소촉매 FeOOH를 포함하는 고체추진제 특성 연구: FeOOH의 소성온도 영향

A study on the Properties of Solid Propellant Containing FeOOH Combustion Catalyst: Effect of FeOOH Calcination Temperature

  • 투고 : 2020.06.23
  • 심사 : 2020.10.12
  • 발행 : 2020.12.31

초록

본 연구는 동일한 제조법을 가지는 연소촉매 FeOOH와 Fe2O3를 제조하여 고체추진제에 적용 후 기계적 물성 및 연소 특성의 변화에 관한 내용이다. 동일한 제조방법을 가지는 FeOOH와 Fe2O3를 만들기 위하여 FeOOH를 200, 300, 400, 500℃에서 2시간 동안 소성시킨 후 XRD 결과를 확인하였다. 또한, 제조된 촉매를 고체추진제에 적용 후 기계적 물성 및 연소 특성의 변화를 나타내었다. XRD 결과상으로 FeOOH는 200~300℃사이에서 Geothite에서 Hematite로 결정상이 변화하는 것을 확인하였다. 추진제의 응력은 연소촉매의 소성온도가 높아짐에 따라 변화가 거의 없지만 연신율은 소성을 진행한 촉매를 적용 시 증가하였다. 연소속도는 소성을 하지 않은 FeOOH가 다른 촉매에 비해 약 3~5% 빠르다는 것을 확인하였다.

This study is about the changes in mechanical and combustion properties after the production of the combustion catalysts FeOOH and Fe2O3 having the same manufacturing method and application to the solid propellant. In order to make the FeOOH and Fe2O3 having the same manufacturing method, FeOOH was calcined at 200, 300, 400, 500℃ for 2 h, and the XRD results were confirmed. In addition, after applying the prepared catalyst to a solid propellant, it exhibited change in mechanical and combustion properties. As result of XRD, FeOOH was confirmed to change the crystal phase from Geothtie to Hematite between 200 and 300℃. The stress of the propellant hardly changed as the calcination temperature of the combustion catalyst incredsed, but the elongation increased when catalyst was calcined. the maximum value at 300℃. The burning rate confirmed that FeOOH without calcination was about 3~5% faster than other catalysts.

키워드

참고문헌

  1. Yim, Y., Kim, J. and Yoo, J., "Effect of FeOOH on Burn Rate for AP Propellant," 34th KSPE Spring Conference, Jeju, Korea, pp. 390-393, 2010.
  2. Kim, H.J. Kim, M.J., Lee, S.J., Ryu, I.S., Yi, K.B. and Jeon, S.G., "Effect of the Preparation Method on the Activity of CeO2-promoted Co3O4 Catalysts for N2O Decomposition," The Korean Society of Clean Technology, Vol. 24, No. 3, pp. 198-205, 2018.
  3. Liang, J., Luo, L., Yang, C., Fang, J. and Li, L., "Synthesis of spindle-shaped α-FeOOH and α-Fe2O3 nanocrystals," Crystal Research and Technology, Vol. 46, No. 5, pp. 493-496, 2011. https://doi.org/10.1002/crat.201100066
  4. Khoiroh, L.M., Mardiana, D., Sabarudin, A. and Ismuyanto, B., "Synthesis of Hematite Pigments (α-Fe2O3) by Thermal Transformations of FeOOH," Journal of the Pure and Applied Chemistry Research, Vol. 2, No. 1, pp. 27-34, 2013. https://doi.org/10.21776/ub.jpacr.2013.002.01.120
  5. Park, S., Won, J., Park, J., Park, E. and Choi, S., "Solid Propellants for Propulsion System Including a Yellow Iron Oxide," Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 3, pp. 65-71, 2018. https://doi.org/10.6108/KSPE.2018.22.3.065
  6. Park, S., Kim, K., Park, J., Rho T. and Choi, S., "Composite Solid Propellants for Propulsion System Including a Yellow Iron Oxide (2)," Journal of the Korean Society of Propulsion Engineers, Vol. 24, No. 3, pp. 12-17, 2020.
  7. Chaudhari, S., Bhattacharjya, D. and Yu, J.S., "1-Dimensional porous a-Fe2O3 nanorods as high performance electrode material for supercapacitors," Journal of the the Royal Society of Chemistry, Vol. 5, pp. 25120-25128, 2013.
  8. Jang, M.W., Kim, T., Han, H., Yun, J. and Son, H., "A Study on the Property of NEPE System Propellant with Respect to the Size of RDX," Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 3, pp. 40-45, 2018. https://doi.org/10.6108/KSPE.2018.22.3.040
  9. Pan, F., Zhang, W., Ye, Y., Huang, Y., Xu, Y., Yuan, Y., Wu, F. and Li, J., "Adsorption Synthesis of Iron Oxide-Supported Gold Catalyst under Self-Generated Alkaline Conditions for Efficient Elimination of Carbon Monoxide," Catalysts, Vol. 8, No. 357, pp. 1-11, 2018.