DOI QR코드

DOI QR Code

A feasibility modeling of potential dam site for hydroelectricity based on ASTGTM DEM data

ASTGTM 전지구 DEM 기반의 수력발전댐 적지분석 사전모델링

  • Jang, Wonjin (Department of Civil, Environmental and Plant Engineering, Graduate School, Konkuk University) ;
  • Lee, Yonggwan (Department of Civil, Environmental and Plant Engineering, Graduate School, Konkuk University) ;
  • Kim, Seongjoon (School of Civil and Environmental Engineering, College of Engineering, Konkuk University)
  • 장원진 (건국대학교 일반대학원 사회환경플랜트공학과) ;
  • 이용관 (건국대학교 일반대학원 사회환경플랜트공학과) ;
  • 김성준 (건국대학교 공과대학 사회환경공학부)
  • Received : 2020.05.20
  • Accepted : 2020.06.02
  • Published : 2020.07.31

Abstract

A feasibility modeling for potential hydroelectric dam site selection was suggested using 1 sec ASTGTM (ASTER Global Digital Elevation Model) and Terra/Aqua MODIS (Moderate Resolution Imaging Spectroradiometer) derived land use (MCD12Q1) data. The modeling includes DEM pre-processing of peak, sink, and flat, river network generation, watershed delineation and segmentation, terrain analysis of stream cross section and reservoir storage, and estimation of submerged area for compensation. The modeling algorithms were developed using Python and as an open source GIS. When a user-defined stream point is selected, the model evaluates potential hydroelectric head, reservoir surface area and storage capacity curve, watershed time of concentration from DEM, and compensation area from land use data. The model was tested for 4 locations of already constructed Buhang, BohyunMountain, Sungdeok, and Yeongju dams. The modeling results obtained maximum possible heads of 37.0, 67.0, 73.0, 42.0 m, surface areas of 1.81, 2.4, 2.8, 8.8 ㎢, storages of 35.9, 68.0, 91.3, 168.3×106 ㎥ respectively. BohyunMountain and Sungdeok show validity but in case of Buhang and Yeongju dams have maximum head errors. These errors came from the stream generation error due to ASTGTM. So, wrong dam watershed boundary limit the head. This study showed a possibility to estimate potential hydroelectric dam sites before field investigation especially for overseas project.

본 연구에서는 해외 수력댐 건설 프로젝트의 사전조사 기초자료 제공을 위하여 댐 위치 결정을 위한 사전적지분석 알고리즘을 개발하고, 위성영상 수치표고자료인 ASTER Global Digital Elevation Model (ASTGTM)과 토지피복자료인 Terra/Aqua combined Moderate Resolution Imaging Spectroradiometer (MODIS) MCD12Q1를 사용하였다. 사전적지분석 알고리즘은 DEM의 전처리, 하천망생성, 유역분할과 지형정보를 고려한 적지분석과 댐 건설 시 수몰면적에 따른 보상면적 산정 알고리즘을 포함하고 있으며 Python기반의 오픈소스 GIS로 구현되었다. 적지분석은 사용자가 하천 위의 지점을 선택하면, DEM으로부터 낙차, 도달시간, 내용적곡선과 같은 지형정보와 토지피복자료를 통한 보상면적을 기반으로 지점의 적지여부를 평가한다. 분석알고리즘은 국내 부항, 보현산, 성덕, 영주댐을 대상으로 시범적용 됐으며 해당 지점의 가능 최대낙차는 각각 37, 67, 73, 42 m로 나타났으며 최대저수면적은 1.81, 2.4, 2.8, 8.8 ㎢ 최대저수량은 35.9, 68, 91.3, 168.3×106 ㎥으로 나타났다. 보현산과 성주 댐에서는 타당성을 보였으나, 부항과 영주 댐의 경우 ASTGTM 에러로 인한 잘못된 하천망과 유역경계로 인해 낙차가 제한됨을 보였다, 본 연구의 결과는 향후 해외 수력댐 사업 진출시 사전분석에서 적지의 지형학적 평가에 도움이 될 것으로 기대된다.

Keywords

References

  1. Al-Khudhairy, D.H.A., Leemhuis, C., Hoffmann, V., Shepherd, I. M., Calaon, R., Thompson, J.R., Gavin, H., Gasca-Tucker, D.L., Zalidis, G., and Papadimos, D. (2002). "Monitoring wetland ditch water levels using Landsat TM and ground-based measurements." Photogrammetric Engineering and Remote Sensing, Vol. 68, No. 8, pp. 809-818.
  2. Dudhani, S., Sinha, A.K., and Inamdar, S.S. (2006). "Assessment of small hydropower potential using remote sensing data for sustainable development in India." Energy policy, Vol. 34, No. 17, pp. 3195-3205. https://doi.org/10.1016/j.enpol.2005.06.011
  3. Garegnani, G., Sacchelli, S., Balest, J., and Zambelli, P. (2018). "GIS-based approach for assessing the energy potential and the financial feasibility of run-off-river hydro-power in Alpine valleys." Applied Energy, Vol. 216, pp. 709-723. https://doi.org/10.1016/j.apenergy.2018.02.043
  4. Gismalla, Y.A., and Bruen, M. (1996). "Use of GIS in reconnaissance studies for small-scale hydropower development in a developing country: A case study from Tanzania." Hydro GIS '96: Application of geographic information systems in hydrology and water resources management, IAHS Publ, Vienna, Austria, No. 235, pp. 307-312.
  5. Hall, D.G. (2006). Feasibility assessment of water energy resources of t he U nited States for n ew low power a nd small hydro classes of hydroelectric plants. Technical Report, DOE/ID-11263DOE/ID-11263, Department of Energy, United States. pp. 24-35.
  6. Karunanidhi, D., Vennila, G., Suresh, M., and Subramanian, S.K. (2013). "Evaluation of the groundwater quality feasibility zones for irrigational purposes through GIS in Omalur Taluk, Salem District, South India." Environmental Science and Pollution Research, Vol. 20, No. 10, pp. 7320-7333. https://doi.org/10.1007/s11356-013-1746-2
  7. Kim, S.J., and Lee, Y.G. (2018). "Present status and future prospect of satellite image uses in water resources area." Korean Journal of Ecology and Environment, Vol. 51, No. 1, pp. 105-123. https://doi.org/10.11614/KSL.2018.51.1.105
  8. Kim, T.J., and Lee, G.S. (2006). "The site analysis for crop cultivation using GIS-based AHP method." Journal of The Korean Society of Civil Engineers, Vol. 26, No. 4D, pp. 695-702.
  9. Lee, G.B., Byun, D.G., and Kim, J.G. (2010). "Activation strategy of hydropower development as new & renewable energy." KIEE Summer conference call, The Korean Institute of Electrical Engineers, pp. 1231-1232.
  10. Lee, J.D., Yeon, S.H., and Kim, S.G. (2000). "A case study on suitability analysis of solid waste landfill site utilizing GIS." Journal of the Korean Association of Geographic information studies, Vol. 3, No. 4, pp. 33-49
  11. Mizukoshi, H., and Aniya, M. (2002). "Use of contour-based DEMs for deriving and mapping topographic attributes." Photogrammetric Engineering and Remote Sensing, Vol. 68, No. 1, pp. 83-93.
  12. Petheram, C., Gallant, J., and Read, A. (2017). "An automated and rapid method for identifying dam wall locations and estimating reservoir yield over large areas." Environmental Modelling & Software, Vol. 92, pp. 189-201. https://doi.org/10.1016/j.envsoft.2017.02.016
  13. Pulighe, G., Bonati, G., Fabiani, S., Barsali, T., Lupia, F., Vanino, S., Nino, P. Arca, P., and Roggero, P.P. (2016). "Assessment of the agronomic feasibility of bioenergy crop cultivation on marginal and polluted land: A GIS-based suitability study from the Sulcis area, Italy." Energies, Vol. 9, No. 11, p. 895. https://doi.org/10.3390/en9110895
  14. Sulla-Menashe, D., and Friedl, M.A. (2018). User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product, accessed 15 May 2020, .
  15. Suresh, M., Gurugnanam, B., Vasudevan, S., Dharanirajan, K., and Raj, N.J. (2010). "Drinking and irrigational feasibility of groundwater, GIS spatial mapping in upper Thirumanimuthar sub-basin, Cauvery River, Tamil Nadu." Journal of the Geological Society of India, Vol. 75, No. 3, pp. 518-526. https://doi.org/10.1007/s12594-010-0045-5
  16. Townshend, J.R. and Justice, C.O. (1988). "Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations." International Journal of Remote Sensing, Vol. 9, No. 2, pp. 187-236. https://doi.org/10.1080/01431168808954847
  17. Yi, C.S., Kim, K.H., Lee, J.H., and Shim, M.P. (2007). "Location analysis for developing small hydropower using geo-spatial information system." Journal of Korea Water Resources Association, Vol. 40, No. 12, pp. 985-994. https://doi.org/10.3741/JKWRA.2007.40.12.985