DOI QR코드

DOI QR Code

Development of salinity simulation using a hierarchical bayesian ARX model

계층적 베이지안 ARX 모형을 활용한 염분모의기법 개발

  • Kim, Hojun (Department of Civil and Environmental Engineering, Sejong University) ;
  • Shin, Choong Hun (Rural Research Institute, Korea Rural Community Corporation) ;
  • Kim, Tae-Woong (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Kwon, Hyun-Han (Department of Civil and Environmental Engineering, Sejong University)
  • 김호준 (세종대학교 건설환경공학과) ;
  • 신충훈 (한국농어촌공사 농어촌연구원) ;
  • 김태웅 (한양대학교(ERICA) 건설환경공학과) ;
  • 권현한 (세종대학교 건설환경공학과)
  • 투고 : 2020.03.11
  • 심사 : 2020.05.26
  • 발행 : 2020.07.31

초록

The development of agricultural land at Saemangeum has required a significant increase in agricultural water use. It has been well acknowledged that salinity plays a critical role in the farming system. Therefore, a systematic study in salinity is necessary to better manage agricultural water. This study aims to develop a stochastic salinity simulation model that simultaneously simulates salinities obtained from different layers. More specifically, this study proposed a two-stage Autoregressive Exgeneous (ARX) model within a hierarchical Bayesian modeling framework. We derived posterior distributions of model parameters and further used them to obtain the predictive posterior distribution for salinities at three different layers. Here, the BIC values are used and compared to determine the optimal model from a set of candidate models. A detailed discussion of the model is provided.

새만금 농업단지가 조성됨에 따라 농업용수 공급이 요구되며, 농업적 측면에서 염분은 작물 재배시 생육에 영향을 미치는 항목으로 농업용수 공급시 철저한 관리가 요구된다. 따라서 농작물에 영향을 미치지 않는 농업용수 공급을 위해 염분계측을 통한 체계적인 농업용수 관리가 필요하다. 본 연구에서는 새만금호내에 관측되는 염분 시계열 자료를 모의하기 위해서 자기회귀모형을 기반으로 한 Two-Stage ARX 모형을 개발하였다. 층별로 나눠진 염분자료를 계층적 Bayesian기법을 활용하여 매개변수를 확률분포형으로 추정하였으며 염분모의의 불확실성을 제시하였다. 최적 모형을 선정하기 위해서 통계적 지표인 BIC값을 이용하였으며, 최종적으로 선정된 모형을 통해 양수장 인근 수역의 염분 모의 결과를 제시하였다.

키워드

참고문헌

  1. Akaike, H. (1974). "A new look at the statistical model identification." IEEE transactions on automatic control, Vol. 19, No. 6, pp. 716-723. https://doi.org/10.1109/TAC.1974.1100705
  2. Bauder, T.A., Waskom, R.M., Sutherland, P.L., Davis, J.G., Follett, R.H., and Soltanpour, P.N. (2011). Irrigation water quality criteria. Colorado State University Extension, No. 0.506.
  3. Cho, H.Y., Cho, B.J., and Kim, S.J. (2008). "Estimation on the regions of freshwater influence using the seasonal salinity data in Asan Bay coastal zone." Journal of Korean Society of Coastal and Ocean Engineers, Vol. 20, No. 2, pp. 219-231.
  4. Cho, Y.M., Ryu, D.C., Lee, K.S., and Park, J.R. (2018). "Strategies to defense of intake raw water according to open of Nakdong River estuary gate" Journal of Korean Society of Water Science and Technology, Vol. 26, No. 1, pp. 47-54. https://doi.org/10.17640/KSWST.2018.26.1.47
  5. Gelman, A. (2006). "Prior distributions for variance parameters in hierarchical models." Bayesian analysis, ISBA, Vol. 1, No. 3, pp. 515-534. https://doi.org/10.1214/06-BA117A
  6. Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004). "Bayesian data analysis." Chapman and Hall/CRC. Inc., N.Y., U.S.
  7. Jeong, Y.H., and Yang, J.S. (2015). "The long-term variations of water qualities in the Saemangeum salt-water lake after the sea-dike construction." Journal of the Korean Society for Marine Environment and Energy, Vol. 18, No. 2, pp. 51-63. https://doi.org/10.7846/JKOSMEE.2015.18.2.51
  8. Kwon, H.H., Brown, C., and Lall, U. (2008). "Climate informed flood frequency analysis and prediction in Montana using hierarchical Bayesian modeling." Geophysical Research Letters, American Geophysical Union, Vol. 35, No. 5, L05404.
  9. Kwon, H.H., Kim, J.Y., Kim, O.K., and Lee, J.J. (2013). "A development of regional frequency model based on hierarchical bayesian model." Journal of Korea Water Resources Association, Vol. 46, No. 1, pp. 13-24. https://doi.org/10.3741/JKWRA.2013.46.1.13
  10. Lee, J.J., Kwon, H.H., and Kim, T.W. (2010). "Concept of trend analysis of hydrologic extreme variables and nonstationary frequency analysis." Journal of the Korean Society of Civil Engineers, Vol. 30, No. 4B, pp. 389-397.
  11. Lettenmaier, D.P., and Wood, E.F. (1993). "Hydrologic forecasting." Handbook of hydrology, McGraw-Hill, N. Y., pp. 26.1-26.30.
  12. Marshall III, F.E., Smith, D., and Nickerson, D. (2004). Using statistical models to simulate salinity variation and other physical parameters in north Florida Bay. Cetacean Logic Foundation. Inc. New Smyrna Beach, F.L., U.S.
  13. Ministry of Agriculture, Food and Rural Affairs (MAFRA) (2017). Design strategy of demand customized agricultural water supply system in Saemangeum Project.
  14. Ministry of Environment (ME) (2011). Study on the operation of environment-friendly drainage sluice gate to improve the water quality of Saemangeum.
  15. Park, J.S. (2002). Application of ARIMA Model for Han River water quality analysis and forecasting. Master thesis, Yonsei University.
  16. Qiu, C., and Wan, Y. (2013). "Time series modeling and prediction of salinity in the Caloosahatchee River Estuary." Water Resources Research, American Geophysical Union, Vol. 49, No. 9, pp. 5804-5816. https://doi.org/10.1002/wrcr.20415
  17. Salas, J.D. (1980). Applied modeling of hydrologic time series. Water Resources Publication, pp. 6-16.
  18. Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and Van Der Linde, A. (2002). "Bayesian measures of model complexity and fit." Journal of the royal statistical society: Series b (statistical methodology), Vol. 64, No. 4, pp. 583-639. https://doi.org/10.1111/1467-9868.00353
  19. Suh, S.W., and Lee, H.Y. (2008). "Water quality simulations after completion of Saemangeum reservoir construction." Journal of the Korean Society of Civil Engineers, Vol. 28, No. 1B, pp. 79-93.
  20. Wang, Y., Liu, Z., Gao, H., Ju, L., and Guo, X. (2011). "Response of salinity distribution around the Yellow River mouth to abrupt changes in river discharge." Continental Shelf Research, Elsevier, Vol. 31, No. 6, pp. 685-694. https://doi.org/10.1016/j.csr.2011.01.005
  21. Willmott, C.J. (1981). "On the validation of models." Physical geography, Taylor and Francis Group, Vol. 2, No. 2, pp. 184-194. https://doi.org/10.1080/02723646.1981.10642213