DOI QR코드

DOI QR Code

Excess Volumes of Aqueous Solutions of Nonionic Amphiphile 2-(2-Hexyloxyethoxy)ethanol

비이온 양친매성 분자 2-(2-Hexyloxyethoxy)ethanol 수용액의 과잉 부피

  • Lee, Jungno (Department of Bio-food Analysis, Bio Campus of Korea polytechnics) ;
  • Hwang, Yoonmi (School of Chemical Engineering and Material Science, Chung-Ang University) ;
  • Kang, Minhee (School of Chemical Engineering and Material Science, Chung-Ang University) ;
  • Lim, Kyung-Hee (School of Chemical Engineering and Material Science, Chung-Ang University)
  • 이정노 (한국폴리텍대학 바이오캠퍼스 바이오식품분석과) ;
  • 황윤미 (중앙대학교 화학신소재공학부) ;
  • 강민희 (중앙대학교 화학신소재공학부) ;
  • 임경희 (중앙대학교 화학신소재공학부)
  • Received : 2020.05.21
  • Accepted : 2020.06.25
  • Published : 2020.06.30

Abstract

The densities of aqueous solutions of the amphiphile 2-(2-hexyloxyethoxy)ethanol (C6E2) were measured at 279.15 K and 282.15 K by vibrating-tube densitometry. Then using the density data of the binary C6E2 (1)/water(2) system, the excess volumes and partial molar volumes were determined at various compositions. Excess volume VE exhibits negative deviation for the whole region of composition, which implies relatively stronger attraction between molecules. At the C6E2 mole fraction of around 0.45, VE was at its minimum. Partial molar volume ${\bar{V}}_1$ increases monotonously with the mole fraction x1(=x) and ${\bar{V}}_2$ decreases with x. Any particular point in ${\bar{V}}_1$ and ${\bar{V}}_2$, which may point to molecular association, was unobserved.

폴리옥시에틸렌(POE) 계열에서 두 번째로 작은 화합물인 양친매 분자 2-(2-hexyloxyethoxy) ethanol (C6E2) 수용액의 밀도를 측정하였다. 밀도 측정은 진통 튜브 밀도계를 이용하여 279.15 K와 282.15 K에서 이루어졌다. 측정된 밀도로부터 2성분 계 C6E2 (1)/H2O (2)의 과잉 부피와 부분 몰 부피를 결정하였다. 과잉 부피는 음의 편차를 나타내었으며, C6E2의 몰 분율 x ≃ 0.45에서 최소 값을 나타내었다. C6E2와 물 분자 사이에 끌어당기는 작용이 상대적으로 우월하지만, x ≃ 0.45에서 이 작용이 가장 크다는 사실을 말해준다. 2성분 계 C6E2 (1)/H2O (2)에서 부분 몰 부피 ${\bar{V}}_1$는 몰 분율 x에 따라서 단조 증가하였으며, ${\bar{V}}_2$는 감소하였다. ${\bar{V}}_1$${\bar{V}}_2$에서 C6E2 분자들의 회합을 암시하는 특이점은 관찰되지 않았다.

Keywords

References

  1. J-E. Cho, S-C Lee, J-K. Park, K-S. Kim, H-L. Shin, Y-R. Kim, N-H., Jeong, "Synthesis of Polyoxyethylene Reactive Surfactant Using Acrylic Acid and Properties of Water-based Adhesive", Polymer(Korea), Vol.44, No.1, pp. 6-12, (2020).
  2. S. H. Kim, S. R. Kim, H. Y. Yoon, I. H. Chang, Y. M. Whang, M. J. Cho, M. J. Kim, S. Y. Kim, S. J. Lee, Y. W. Choi, "Poloxamer 407 Hydrogels for Intravesical Instillation to Mouse Bladder Gel-Forming Capacity and Retention Performance", Korean J. Urol. Oncol., Vol.15, No.3, pp. 178-186, (2017). https://doi.org/10.22465/kjuo.2017.15.3.178
  3. Y. Wang, J. Yao, G. Zhu, J. Militky, J. Marek, M. Venkataraman, G. Zhang, "A novel method for producing bi-component thermo-regulating alinate fiber from phase change material microemulsion", Text. Res. J., Vol.90, pp.1038-1044, (2020). https://doi.org/10.1177/0040517519886075
  4. D. J. Mitchel et al., "Phase Behavior of Polyoxyethylene Surfactants with Water," J. Chem. Soc., Faraday Trans. I, Vol.79, pp. 975-1000, (1983). https://doi.org/10.1039/f19837900975
  5. M. S. Alvarez, F. Moscoso, F. J. Deive, M. A. Sanroman, A. Rodriguez, "On the phase behaviour of polyethoxylated sorbitan (Tween) surfactants in the presence of potassium inorganic salts," J. Chem. Thermodyn., Vol.55, 151-158 (2012) https://doi.org/10.1016/j.jct.2012.07.001
  6. G. Bell, "Non-ionic surfactant phase diagram prediction by recursive partitioning," Phil. Trans. Royal Soc. A, Vol.374, 20150137 (2016). https://doi.org/10.1098/rsta.2015.0137
  7. B. Haddou, H. Benkhedja, K. T. Salles, J. P. Canselier, C. Gourdon, "Prediction of the cloud point of polyethoxylated surfactants and their mixtures by the thermodynamic model of Flory-Huggins-Rupert," J. Disp. Sci. Technol., Vol.40, 1-8 (2019). https://doi.org/10.1080/01932691.2018.1462202
  8. K. Y. Kim, K-H. Lim, "Fits of Scaling and UNIQUAC Equlibrium (LLE) Phase Compositions of the Binary Amphiphile 2-Butoxyethanol(1)+Water(2) Measured by the Phase volume Method,"J. Chemical Eng. Data, Vol.46, No.4, pp. 967-973, (2001). https://doi.org/10.1021/je000306l
  9. F. Elizalde, J. Garcia, M. Costas, "Effect of aggregates in bulk and surface properties: surface tension, foam stability, and heat capacities for 2-butoxyethanol + water", J. Phys. Chem., Vol.92, No.12, pp. 3565-3568, (1988). https://doi.org/10.1021/j100323a048
  10. C. M. Ellis, "The 2-butoxyethanol-water system: Critical solution temperatures and salting-out effects", J. Chem. Educ., Vol.44, No.7, pp. 405, (1967). https://doi.org/10.1021/ed044p405
  11. K-H. Lim, J. S. Reckely, D. H. Smith, "Liquid-Liquid Equilibrium in Binary Mixtures of the Nonionic Amphiphile $CH_3(CH_2)_5(OCH_2CH_2)_2OH$ and water", J. Colloid Interface Sci., Vol.161, pp. 465-470, (1993). https://doi.org/10.1006/jcis.1993.1490
  12. H. H. Lai, L-J. Chen, "Liquid-Liquid Equilibrium Phase Diagram and Density of Three Water + Nonionic Surfactant $C_iE_j$ Binary Systems", Journal Chemical Eng. Data, Vol.44, No.2, pp. 251-253, (1999). https://doi.org/10.1021/je980138l
  13. I. C. Sanchez, M. T. Stone, "Statistical Thermodynamics of Polymer Solutions and Blends" in Polymer Blends, Volume 1: Formulation. Edited by D. R. Paul and C. B. Bucknall, John Wiley & Sons, (2000).
  14. K-H. Lim, Thermodynamics (for Scientists and Engineers), Freeacademy, (2008).
  15. G. M. Barrow, Physical Chemistry, 6e, McGraw-Hill, New York, (1996).
  16. G. Roux, G. Perron, J. E. Desnoyers, "Model Systems for Hydrophobic interactions: Volumes and Heat Capacities of n-Alkoxyethanols in Water," J. Solution Chem., Vol.7, pp. 639-654, (1978). https://doi.org/10.1007/BF00652015
  17. W. Siu, Y. Koga, "Excess partial molar enthalpies of 2-butoxyethanol and water in 2-butoxyethanol-water mixtures", Can. J. Chem., Vol.67, No.4, pp. 671-676, (1989). https://doi.org/10.1139/v89-101
  18. G. Scatchard, G. M. Wilson, "Vapor-Liquid Equlibrium. XIII. The System Water-Butyl Glycol from $5^{\circ}$ to $85^{\circ}$," J. Am. Chem. Soc., Vol.86, No.2, pp. 133-137, (1964). https://doi.org/10.1021/ja01056a004
  19. V. U. Onken, "Die thermodynamischen Funktionen des Systems Wasser/Butylglykol," Z. Elektrochemie, Vol.63, pp. 321-327, (1959).
  20. N. Ito, T. Fujiyama, Y. Udagawa, "A Study of Local Structure Formation in Binary Solutions of 2-Butoxyethanol and Water by Rayleigh Scatterring and Raman Spectra", Bull. Chem. Soc. Jpn. Vol.56, No.2, pp. 379-385, (1983). https://doi.org/10.1246/bcsj.56.379