DOI QR코드

DOI QR Code

활성탄에 의한 Acid Fuchsin 염료의 흡착에 대한 등온선, 동력학 및 열역학 특성치에 대한 해석

Analysis on Isotherm, Kinetic and Thermodynamic Properties for Adsorption of Acid Fuchsin Dye by Activated Carbon

  • 이종집 (공주대학교 화학공학부)
  • Lee, Jong Jib (Division of chemical Engineering, Kongju National University)
  • 투고 : 2020.03.19
  • 심사 : 2020.04.19
  • 발행 : 2020.08.01

초록

활성탄에 의한 acid fuchsin (AF) 염료의 흡착에 대한 등온선, 동력학 및 열역학적 특성치를 흡착제의 양, pH, 초기 농도, 접촉시간 및 온도를 변수로 하여 수행하였다. 활성탄을 사용한 AF의 흡착에 대한 pH의 영향은 산성(pH 8)에서 흡착백분율이 높은 욕조 현상을 나타냈다. 등온흡착 데이터는 Freundlich, Langmuir, Dubinin-Radushkevich 등온흡착식에 맞춰 보았다. Freundlich 식이 가장 높은 일치도를 나타냈으며, 흡착메카니즘이 다분자층 흡착임을 알았다. 흡착용량은 온도증가와 함께 증가하였다. Freundlich의 분리계수는 이 흡착공정이 적합한 처리공정임을 나타냈다. Dubinin-Radushkevich 등온흡착식에 의해 평가된 흡착 에너지는 활성탄에 의한 AF의 흡착이 물리 흡착임을 확인시켰다. 흡착동력학은 유사이차반응속도식에 잘 맞았다. 입자내 확산 모델에 의해 흡착점에서의 표면 확산이 율속단계로 평가되었다. 흡착공정의 활성화 에너지와 엔탈피 변화는 각각 21.19 kJ/mol, 23.05 kJ/mol 이었다. Gibbs 자유 에너지 변화는 흡착반응이 온도가 높아질수록 자발성이 더 진다는 것을 알려주었다. 양의 엔트로피는 이공정이 비가역적이라는 것을 나타냈다. 등량 흡착열은 본질덕으로 물리흡착임을 나타냈다.

Isotherms, kinetics and thermodynamic properties for adsorption of acid fuchsin (AF) dye by activated carbon were carried out using variables such as dose of adsorbent, pH, initial concentration and contact time and temperature. The effect of pH on adsorption of AF showed a bathtub with high adsorption percentage in acidic (pH 8). Isothermal adsorption data were fitted to the Freundlich, Langmuir, and Dubinin-Radushkevich isotherm models. Freundlich isothem model showed the highest agreement and confirmed that the adsorption mechanism was multilayer adsorption. It was found that adsorption capacity increased with increasing temperature. Freundlich's separation factor showed that this adsorption process was an favorable treatment process. Estimated adsorption energy by Dubinin-Radushkevich isotherm model indicated that the adsorption of AF by activated carbon is a physical adsorption. Adsorption kinetics was found to follow the pseudo-second-order kinetic model. Surface diffusion at adsorption site was evaluated as a rate controlling step by the intraparticle diffusion model. Thermodynamic parameters such as activation energy, Gibbs free energy, enthalpy entropy and isosteric heat of adsorption were investigated. The activation energy and enthalpy change of the adsorption process were 21.19 kJ / mol and 23.05 kJ / mol, respectively. Gibbs free energy was found that the adsorption reaction became more spontaneously with increasing temperature. Positive entropy was indicated that this process was irreversible. The isosteric heat of adsorption was indicated physical adsorption in nature.

키워드

참고문헌

  1. Akar, T., Demir, T. A., Kiran, I., Ozcan, A., Ozcan A. S. and Tunali, S., "Biosorption potential of Neurospora Crassa Cells for Decolorization of Acid Red 57 (AR57) Dye," J. Chem. Technol. Biotechnol., 81, 1100-1106(2006). https://doi.org/10.1002/jctb.1462
  2. Bhatnagar, A. and Jain, A. K., "A Comparative Adsorption Study with Different Industrial Wastes as Adsorbents for the Removal of Cationic Dyes from Water," J. Col. Interf. Sci., 281, 49-55(2005). https://doi.org/10.1016/j.jcis.2004.08.076
  3. Lee, J. J., "Analysis on Adsorption Equilibrium, Kinetic, Thermodynamic Parameters of Aniline Blue Using Activated Carbon," Korean Chem. Eng. Res., 57, 679-686(2019). https://doi.org/10.9713/kcer.2019.57.5.679
  4. Thinakaran, N., Baskaralingamb, P., Pulikesi, M., Panneerselvamc, P., Sivanesan, S., "Removal of Acid Violet 17 from Aqueous Solutions by Adsorption onto Activated Carbon Prepared from Sunflower Seed Hull," J. Hazard. Mater., 151, 316-322(2008). https://doi.org/10.1016/j.jhazmat.2007.05.076
  5. Yang, S. Wu, Y., Wu, Y., and Zhu, L., "Optimizing Decolorization of Acid Fuchsin and Acid Orange II Solution by $MnO_2$ Loaded MCM-41," J. Taiwan Inst. Chem. Eng., 50, 205-214 (2015). https://doi.org/10.1016/j.jtice.2014.12.023
  6. Yang J. W. and Kim J-H., "Evaluation of Adsorption Characteristics of 2-Picoline onto Sylopute," Korean Chem. Eng. Res., 57, 210-218(2019).
  7. Gong, N., Liu, Y. and Huang, R., "Simultaneous Adsorption of $Cu^{2+}$ and Acid Fuchsin (AF) from Aqueous Solutions by CMC/Bentonite Composite," Intl. J. Biol. Macromol., 115, 580-589(2018). https://doi.org/10.1016/j.ijbiomac.2018.04.075
  8. Akbarnejada, S., Amooeya, A. A., and Ghasemib, S., "High Effective Adsorption of Acid Fuchsin Dye Using Magnetic Biodegradable Polymer-based Nanocomposite from Aqueous Solutions," Microchem. J., 149, 103966(2019). https://doi.org/10.1016/j.microc.2019.103966
  9. Marrakchi, F., Ahmed, M. J., Khanday, W. A., Asif, M. and Hameed, B. H., "Mesoporous Carbonaceous Material from Fish Scales as Low-Cost Adsorbent for Reactive Orange 16 Adsorption," J. Taiwan Inst. Chem. Eng., 71, 47-54(2017). https://doi.org/10.1016/j.jtice.2016.12.026
  10. Lee, J. J., "Characteristics of Equilibrium, Kinetic and Thermodynamic for Adsorption of Acid Blue 40 by Activated carbon," J. Korea Acad. Ind. Coop. Soc., 19, 592-599(2018). https://doi.org/10.5762/KAIS.2018.19.12.592
  11. Saruchi and Kumar, V., "Adsorption Kinetics and Isotherms for the Removal of Rhodamine B Dye and $Pb^{+2}$ Ions from Aqueous Solutions by a Hybrid Ion-Exchanger," Arabian J. Chem., 12, 316-329(2019). https://doi.org/10.1016/j.arabjc.2016.11.009
  12. Edison, D., Ramesh, K. S., Sivaramkumar, M. S. and Velmurugan, R., "Removal of Acid Violet 19 Dye from Aqueous Solution by Adsorption onto Activated Charcoal and Polyaniline Coated Charcoal," Intl. J. Trend Res. Dev., 3, 22-27(2016).
  13. Lee, J. J., "Adsorption Kinetic, Thermodynamic Parameter and Isosteric Heat for Adsorption of Crystal Violet by Activated Carbon," Appl. Chem. Eng., 28, 206-213(2017). https://doi.org/10.14478/ace.2016.1132
  14. Kim, Y.-S. and Kim, J.-H., "Isotherm, Kinetic and Thermodynamic Studies on the Adsorption of Paclitaxel onto Sylopute," J. Chem. Thermodyn., 130, 104-113(2019). https://doi.org/10.1016/j.jct.2018.10.005
  15. Fu, J., Zhu, J., Wang, Z., Wang, Y., Wang, S., Yan, R. and Xu, Q., "Highly-Efficient and Selective Adsorption of Anionic Dyes onto Hollow Polymer Microcapsules Having a High Surface-Density of Amino Groups: Isotherms, Kinetics, Thermodynamics and Mechanism," J. Coll. Intrf. Sci., 542, 123-135(2019). https://doi.org/10.1016/j.jcis.2019.01.131
  16. Hamza, W., Dammak, N., Hadjltaief, H. B., Eloussaief, M. and Benzina, M., "Sono-assisted Adsorption of Cristal Violet Dye onto Tunisian Smectite Clay: Characterization, Kinetics and Adsorption Isotherms," Ecotoxicol. Environ. Safe., 163, 365-371(2018). https://doi.org/10.1016/j.ecoenv.2018.07.021
  17. Al-Kadhi, N. S., "The Kinetic and Thermodynamic Study of the Adsorption Lissamine Green B dye by Micro-particle of Wild Plants from Aqueous Solutions," Egypt. J. Aquat. Res., 45, 231-238(2019). https://doi.org/10.1016/j.ejar.2019.05.004
  18. A, U. I., Abdulraheem, G., Bala, S., Muhammad S. and Abdullahi, M., "Kinetics, Equilibrium and Thermodynamics Sudies of CI Reactive Blue 19 Dye Adsorption on Coconut Shell Based Activated Carbon," Intl. Biodeterior. Biodegradation, 102, 265-273(2015). https://doi.org/10.1016/j.ibiod.2015.04.006
  19. Hasani, S. Ardejani, F. D. and Olya, M. E., "Equilibrium and Kinetic Studies of Azo Dye (Basic Red 18) Adsorption onto Montmorillonite: Numerical Simulation and Laboratory Experiments," Korean J. Chem. Eng., 34, 2265-2274(2017). https://doi.org/10.1007/s11814-017-0110-5
  20. Dobrotvorskaia, A. N., Pestsov O. S. and Tsyganenko, A. A., "Lateral Interaction between Molecules Adsorbed on the Surfaces of Non-Metals," Top. Catal., 60, 1506-1521(2017). https://doi.org/10.1007/s11244-017-0835-8