DOI QR코드

DOI QR Code

Estimation of the Liability Risk for Release of Chemicals at Chemical Plant

화학플랜트에서의 화학물질 누출사고에 대한 배상책임 위험도 산정

  • Moon, Jung Man (Department of Safety Engineering, Graduate School, Seoul National University of Science and Technology) ;
  • Park, Dal Jae (Department of Safety Engineering, Faculty of Engineering, Seoul National University of Science and Technology)
  • 문정만 (서울과학기술대학교 일반대학원 안전공학과) ;
  • 박달재 (서울과학기술대학교 공과대학 안전공학과)
  • Received : 2020.04.28
  • Accepted : 2020.07.14
  • Published : 2020.08.01

Abstract

This study is to improve the method of calculating the risk of liability that arise from release and dispersion of chemicals outside the plant in process industries such as chemical and petrochemical plants. To achieve this goal, the correlation factors with the risk of chemical release accident is derived by simulating release and dispersion of substances (14 types) designated by Ministry of Environment as preparation for accident, analyzing the cases of chemical release and effects of plant life damage. The method of calculating chemical liability risk was modified and supplemented based on the results obtained from the study. The correlation coefficient between the probit value of 14 chemical types and the liability risk by EURAM (European Union Risk Ranking Method) was -0.526, while the correlation coefficient with the modified chemical release accident risk was 0.319. Thus, the value from modified method shows that they appear to be correlated. According to modified calculating methodology, the correlation between ERPG-2 value and liability risk of 97 chemical types was -0.494 which is 19 times higher than existing liability risk correlation as absolute value. And the correlation coefficient of corrosion risk was 0.91. The standardized regression coefficients (β) value of correlation factors that affected the increase and decrease of risk were derived in order of Corrosion Index(0.713), ERPG-2 (0.400) and NFPA Health Index (0.0680) by values. It is expected that these findings this study result will also enable the calculation of reasonable chemical release liability risk for existing and new chemical, and will help use them as quantitative liability risk management indicators for chemical plant site.

본 연구는 화학 및 석유화학 플랜트 등의 장치산업에서 사업장 외부로 유해화학물질이 누출·확산되어 발생할 수 있는 배상책임 위험도에 대한 산정 방식을 개선하고자 하였다. 이를 위해 환경부 사고대비 물질(14종)에 대해 누출·확산 시뮬레이션, 화학물질 누출사고 사례 분석, 식물피해 영향 자료 분석 등을 통하여 화학물질 누출사고 배상책임 위험도와의 상관관계인자를 도출하였고, 도출된 결과를 바탕으로 화학물질 배상 책임 위험도 산정 방법을 수정·보완하였다. 14종의 화학물질의 Probit 값과 EURAM 배상책임 위험도의 상관계수는 -0.526로 나타났고, 수정된 화학물질 누출사고 배상책임 위험도와의 상관계수는 0.319로 상관성이 있는 것으로 분석되었다. 수정된 산정 방법론으로 97종에 대한 배상책임 위험도와 ERPG-2 값의 상관계수는 -0.494로 분석되었고, 이는 기존 배상책임 위험도와의 상관관계보다 약 19배 높은 상관관계를 보였고, 부식위험도 값과의 상관계수는 0.91로 분석되었다. 위험도의 증가와 감소에 영향을 미친 상관관계 인자의 표준화 회귀계수(β) 값은 Corrosion Index (0.713), ERPG-2 (0.400), NFPA_Health Index (0.068) 크기 순서로 도출되었다. 이러한 연구결과는 기존과 신규 화학물질의 합리적인 배상책임 위험도 산정이 가능하게 하고, 사업장에서 정량적인 배상책임 위험관리 지표로 활용하는데 도움이 되리라 판단된다.

Keywords

References

  1. Park, E. W., Park, J. Ho., Lee, K. S., Hong, M. K., Ahn, B. J., and Lee, E. J., "A Study on the Establishment of the Criteria for Selection of Hazardous Substances Requiring Management in Occupational Safety and Health Act," Journal of Korean Society of Occupational and Environmental Hygiene, 24(4), 425-435 (2014). https://doi.org/10.15269/JKSOEH.2014.24.4.425
  2. Rim, K. T., Koo, K. H. and Park, J. S., "Toxicological Evaluations of Rare Earths and Their Health Impacts to Workers: Literature Review," Safety and Health at Work, 4(1), 12-26(2013). https://doi.org/10.5491/SHAW.2013.4.1.12
  3. Park, K. S., "Offsite Risk Assessment on Chloric Acid Release," Korean Chem Eng. Res., 54(6), 781-785(2016). https://doi.org/10.9713/kcer.2016.54.6.781
  4. Nam, Y. J., "Hydrogen Fluoride, Change Gumi (Accident paper of Hydrogen Flouride Release in Gumi)", Gumi City Hall Safety Disaster Department (2013).
  5. Kim, S. Y., Cho, C. H. and Lee, E. K., "Studies on the Chemical Accidents of Korea by the Statistics and Case Review," Korea Institute of Hazardous Materials, 5(1), 50-58(2017).
  6. National Institute of Chemical Safety, "Report of impact investigation of accident of Tetrachlorosilane chemical release at OCI plant in Gunsan City," (2015).
  7. ChosunBiz, http://biz.chosun.com/site/data/html_dir/2019/05/20/2019052002697.html(Access date 2020, 02, 05)
  8. Kim, J. H., Jeong, C. M., Kang, S. M., Yong, J. W., Yoo, B. T. and Seo, J. M., "Comparison Study for Impact Range of Prediction Models Through Case Study about Gumi Hydrogen Fluoride Accident," Korean Chem. Eng. Res., 55(1), 48-53(2017). https://doi.org/10.9713/kcer.2017.55.1.48
  9. Korea Insurance Development Institute, "A Study on the Establishment of Environmental Damage Assessment Criteria," 26-94 (2014).
  10. Kim, J. H. and Jung, S. H., "Offsite Consequence Modeling for Evacuation Distances against Accidental Hydrogen Fluoride (HF) Release Scenarios," Korean Chem Eng. Res., 54(4), 582-585(2016). https://doi.org/10.9713/kcer.2016.54.4.582
  11. Kwon, H. M., "KOSHA Guide P-107, Technical Specification for Selecting Worst-case and Alternative Leakage Scenarios," Korea Occupational Safety & Health Agency, 10-11(2016).
  12. Hansen, B. G., Van Haelst, A. G., Van Leeuwen, K. and Van Der Zandt, P., "Priority Setting for Existing Chemicals: EU Ropean Union Risk Ranking Method," Environmental Toxicology and Chemistry, 18(4), 772-779(1999). https://doi.org/10.1897/1551-5028(1999)018<0772:PSFECE>2.3.CO;2
  13. Kim, Y. S., Park, H. S., Lee, D. S. and Shin, D. C.,"Comparisons of Chemical Ranking and Scoring Methods," Environmental Health and Toxicology, 18(3), 183-191(2003).
  14. An, Y. J., Jeong, S. W., Kim T. S., Lee, W. M., Nam, S. H. and Baek Y. W., "Assessment factors for the Selection of Priority Soil Contaminants based on the Comparative Analysis of Chemical Ranking and Scoring Systems," Soil & Groundwater Environment, 13(6), 62-71(2008).
  15. Environmental Media, https://www.ecomedia.co.kr/news/newsview.php?ncode=1065572168945843(Access date 2020, 02, 10)
  16. CCPS, "Guidelines for Consequene Analysis of Chemical Releases," AIChE, John Wiley & Sons, 241-261(1999).
  17. Park, M. N., Kim, C. W. and Shin, D. I., "Necessity of Standardization and Standardized Method for Substances Accounting of Environmental Liability Insurance," Journal of the Korean Institute of Gas, 22(5), 1-17(2018). https://doi.org/10.7842/KIGAS.2018.22.5.1
  18. Chah, S. W., Joo, C. K., Park, H. S., Park, S. J., Kim, P. J., Lee, S.M., Choi, K. H. and Yi, J. H., "Methodology to Determine the Order of Priority for Environmental Pollutants and Selection of Major Pollutants for Metropolitan and Industrial Areas," Korean Chem Eng. Res., 41(3), 357-367(2003).
  19. Yoon, Y., "A Study on the Improvement of Off-site Consequence Analysis of Korean version Risk Management of Chemical Accidents," Ph D. Dissertation, Inje University, Kimhae, 1-14(2018).
  20. National Institute of Chemical Safety, "Plant Damage Reduction by Exposure of substances (14 species) in preparation for accidents," Daejeon, 4-128(2016).
  21. National Institute of Chemical Safety, "Plant Damage Reduction by Exposure of substances (14 species) in preparation for accidents," Daejeon, 6-44(2017).
  22. National Institute of Chemical Safety, https://icis.me.go.kr/page-Link.do(Access date 2020, 02, 15).