DOI QR코드

DOI QR Code

The Major Technology Distribution Analysis of Domestic Defense Companies in Naval Ships based on Patent Information Data

함정 분야 방산업체 주요 기술 분포 분석

  • Kim, Jang-Eun (Naval System Research Team1, Defense Agency for Technology and Quality)
  • 김장은 (국방기술품질원 해상수중연구1팀)
  • Received : 2020.03.27
  • Accepted : 2020.07.03
  • Published : 2020.07.31

Abstract

In order to decide the naval ship weapon system acquisition for national policy/market economy activities, the decision makers can determine policy based on current technology level/concentration/utilization. For this, the decision makers apply the major common technology field analysis using patents data. As a method for collecting patent data, we can collect patent data of domestic mobile carriers through the Korea Intellectual Property Rights Information System of Korean Intellectual Property Office. As a result, we collected 14,964 patents/352 International Patent Classification(IPC) types. Based on these data, we performed three analysis processes (SNA, PCA, ARIMA, Text Mining) and got each result from extracting 58 IPC types of SNA and 7 IPC types of PCA. Based on the analysis results, we have confirmed that 7 IPC(B63B, H01M, F03D, B01D, H02K, B23K, H01H) types are the Major Common Technology Distribution of domestic Defense Companies.

함정 무기체계는 작전운용성능(능력)에 따라 국내 기술 수준에 기반하여 설계/건조되며, 일정 기간 운용 후 성능개량 소요 발생에 따른 개조/개장 및 기존함 대비 고도화된 후속함이 요구되는 특성을 가지고 있다. 이러한 특성을 고려하고 고객이 요구하는 함정 무기체계 기술 수준과 무기체계 연구개발을 통한 국내 기술 수준 향상 및 핵심기술 확보하기 위해 기술 분류/특성이 정형화되어있는 특허 자료 분석을 통해 획득 필요 기술에 대한 의사결정 자료로 활용할 수 있다. 이를 위해 방위사업법 제35조(방산업체의 지정 등)에 따라 지정된 10개 함정 분야 방산업체의 특허자료를 특허청 특허정보검색서비스를 통해 특허자료(특허수/국제특허분류 14,964건/352개)를 수집하였으며, 수집된 자료를 기반으로 함정분야 방산업체 간 사회망 분석을 통해 중심성이 높은 58개 국제특허분류를 추출했다. 추출된 국제특허분류를 기반으로 주성분 분석을 통해 함정 분야 방산업체가 집중하는 주요 기술 분야로 국제특허분류 7개(B63B, H01M, F03D, B01D, H02K, B23K, H01H)를 확인했다. 이어서 자기회귀 결합 이동평균 모형 분석결과, 국제특허분류 3개(B63B, B01D, B23K)는 지속적인 기술획득 활동이 예측했으며, 국제특허분류 4개(H01M, F03D, H02K, H01H)는 기술획득 활동이 낮아짐을 예측했다.

Keywords

References

  1. Republic of Korea, Defense acquisition program administration regulations, Defense Acquisition Program Administration, 2019.
  2. S. H. Jeon, et al., Patent Analysis & Technology Forecasting, KYOWOOSA, 2014.
  3. Republic of Korea, DEFENSE ACQUISITION PROGRAM ACT, Republic of Korea, 2019
  4. Defense Aency for Technology and Quality, DTiMS [cited 2018 may 08], Available From: https://dtims.dtaq.re.kr/vps/OINF_searchBookList10.do (accessed Nov. 20, 2019)
  5. WIPO, International patent classification version 2018 Guide to the IPC, World Intellectual Property Organization, 2019.
  6. J. W. et al., "Analysis Results in Technological Trends of Military Small Giant Venture Tech-Fi Net via Social Network Analysis," Journal of the Korea Academia-Industrial cooperation Society Vol. 20, No. 12 pp. 444-455, 2019 DOI : https://doi.org/10.5762/KAIS.2019.20.12.444
  7. C.S. Son., "Study for Analyzing Defense Industry Technology using Datamining technique: Patent Analysis Approach," Journal of the Korea Academia-Industrial cooperation Society Vol. 19, No. 10 pp. 101-107, 2018 DOI : https://doi.org/10.5762/KAIS.2018.19.10.101
  8. Republic of Korea, Status of patent request / processing [cited 2019 september 18], Available From: http://www.index.go.kr/potal/main/EachDtlPageDetail .do?idx_cd=2785 (accessed Nov. 20, 2019)
  9. D. K. Won et al., "Network analysis and comparing citation index of statistics journals," Journal of the Korean Data & Information Science Society 25(2). 317-325, 2014 DOI : http://dx.doi.org/10.7465/jkdi.2014.25.2.317
  10. Y. H. Kim et al., Social network analysis 4th Ed, PARKYOUNGSA, 2016.
  11. Jolliffe, Ian., Principal component analysis, John Wiley & Sons, 2002.
  12. Y. S. Choi, Multivariate data analysis with R, KYUNGMOONSA, 2018.
  13. Kaiser, Henry F. "The application of electronic computers to factor analysis," Educational and psychological measurement, 1960. DOI : https://doi.org/10.1177/001316446002000116
  14. C. Y. Park, "Simple principal component analysis using Lasso," Journal of the Korean Data & Information Science Society. 24:533-541, 2013. DOI : http://dx.doi.org/10.7465/jkdi.2013.24.3.533
  15. W. L. Lee, Time series analysis and forecasting, 2nd Ed, TAMJIN, 2016.
  16. B. H. Ahn et al., "Regional Long-term/Mid-term Load Forecasting using SARIMA in South Korea," Journal of the Korea Academia-Industrial cooperation Society Vol. 16, No. 12 pp. 8576-8584, 2015. DOI : https://doi.org/10.5762/KAIS.2015.16.12.8576
  17. K. Y. Bae et al., "Analysis of the abstracts of research articles in food related to climate change using a text mining algorithm," Journal of the Korean Data & Information Science Society , 24:533-541, 2013. DOI : http://dx.doi.org/10.7465/jkdi.2013.24.6.1429
  18. BOX, George EP, et al. Time series analysis: forecasting and control. John Wiley & Sons, 2015.