DOI QR코드

DOI QR Code

A Basic Study for the Application of the Shafting System for the Contra-Rotating Propeller

상반회전 프로펠러 축계 실용화를 위한 기초 연구

  • Shin, Sang-Hoon (Department of Aero Mechanical Engineering, Kyungwoon University) ;
  • Lee, Seung-Min (Department of Aero Mechanical Engineering, Kyungwoon University) ;
  • Rim, Chae Whan (Department of Aero Mechanical Engineering, Kyungwoon University)
  • 신상훈 (경운대학교 항공기계공학과) ;
  • 이승민 (경운대학교 항공기계공학과) ;
  • 임채환 (경운대학교 항공기계공학과)
  • Received : 2020.04.27
  • Accepted : 2020.07.03
  • Published : 2020.07.31

Abstract

If the lost energy produced by a propeller can be partially recovered, the propulsive efficiency can be increased, and the fuel consumption reduced. The devices installed for this purpose are called Energy Saving Devices, of which the Contra-Rotating Propeller system is one of the most effective devices. The first problem to be solved to install the Contra-Rotating Propeller system on a large ship is that the mean pressure generated in the journal bearing needs to meet the design criteria of the classifications. In Korea, however, the practical use is being delayed because it cannot overcome this step. The next step is to lower local pressure to increase the reliability. In this study, to solve the mean pressure problem as the first step of practical use, a product carrier with a short stern shape was selected to reduce the weight of the shafting system, and a suitable shafting-system design plan was proposed. Shaft analysis confirmed that the mean pressure of 0.8 MPa (8 bar), which is a design criterion of the classifications for a journal bearing lining material (white metal), was satisfied. In addition, the necessity of reducing the local pressure was also confirmed.

프로펠러에 의해 생성된 회전 유동에 의한 손실된 에너지를 일부라도 회복시킨다면 추진효율을 증가시킬 수 있고 선박의 운항에 필요한 연료 소모를 줄일 수 있다. 이러한 목적을 위해 설치되는 장비를 에너지저감 장치라고 하며, 이 중 추진효율을 가장 증대시키는 장치 중 하나가 상반회전 프로펠러 시스템이다. 대형 선박에 상반회전 프로펠러를 장착하기 위해서 우선 해결해야 할 과제는 저널 베어링에 발생하는 평균 압력이 선급 요구 조건을 만족하는 것인데, 국내에서는 현재 이 단계를 극복하지 못해 실용화가 이루어지지 않고 있다. 그 다음 단계는 국부 압력도 낮추어 신뢰성을 높이는 것이다. 본 연구에서는 첫 단계인 평균 압력 문제를 해결하기 위해 상반회전 프로펠러 장착 대상 선박으로 축계의 중량을 줄일 수 있는 선미 형상이 짧은 정유운반선을 선정하였고, 이에 적합한 축계 설계안을 제시하였다. 제시안에 대해 축계 해석을 수행한 결과, 선박에 주로 사용되는 저널 베어링 라이닝 재질(화이트메탈)에 대한 선급 요구 설계기준인 평균 면압 0.8 MPa(8 bar)을 만족함을 확인하였으며, 다음 단계인 국부 압력 감소의 필요성도 확인하였다.

Keywords

References

  1. J. H. Kim, J. E. Choi, B. J. Choi, S. H. Chung and H. W. Seo, "Development of energy-saving devices for a full slow-speed ship through improving propulsion performance", International Journal of Naval Architecture and Ocean Engineering, Vol. 7, No. 2, pp.390-398, 2015. DOI: https://doi.org/10.1515/ijnaoe-2015-0027
  2. J. Dang, "An exploratory study on the working principles of energy saving devices (ESDs) - PIV, CFD investigations and ESD design guidelines", 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil, 2012.
  3. S. Matsui, S. Uto, Y. Yamada and S. Watanabe, "Numerical study on the structural response of energy-saving device of ice-class vessel due to impact of ice block", International Journal of Naval Architecture and Ocean Engineering, Vol. 10, No. 3, pp.367-375, 2018. DOI: https://doi.org/10.1016/j.ijnaoe.2018.02.003
  4. Y. Inukai, "Development of Electric Propulsion Vessels with Contra-Rotating Propeller", Journal of the Japan Institute of Marine Engineering, Vol. 46, No. 3, pp.313-319, 2011. DOI: https://doi.org/10.5988/jime.46.313
  5. K. J. Paik, J. Lee, T. Lee, T. Hoshino, H. G. Park and J. Seo, "Numerical Study on the Effects of Combination of Blade Number for Shaft Forces and Moments of Contra-Rotating Propeller", Journal of the Society of Naval Architects of Korea, Vol. 50, No. 5, pp.282-290, 2013. DOI: https://doi.org/10.3744/SNAK.2013.50.5.282
  6. K. M. Dong and S. N. Jung, "Aerodynamic Performance Prediction of a Counter-rotating Wind Turbine System with Wake Effect", Journal of The Korean Society for Aeronautical & Space Sciences, Vol. 30, No. 7, pp.20-28, 2002. DOI: https://doi.org/10.5139/JKSAS.2002.30.7.020
  7. J. D. Van Manen and M. W. C. Oosterveld, "Model Tests on Contrarotating Propeller", 7th Symposium on Naval Hydrodynamics, Rome, Italy, 1968.
  8. M. L. Miller, Experimental Determination of Unsteady Forces on Counterrotating Propellers in Uniform Flow, David Naval Ship Research and Development Center Report SPD-659-01, 1976.
  9. K. S. Min, B. J. Chang and H. W. Seo, "Study on Contra-Rotating Propeller system design and full-scale performance prediction method", International Journal of Naval Architecture and Ocean Engineering, Vol. 1, No. 1, pp.29-38, 2009. DOI: https://doi.org/10.3744/JNAOE.2009.1.1.029
  10. Y. Inukai, T. Kanemaru and J. Ando, "Prediction of Steady Performance of Contra-Rotating Propellers Including Wake Alignment", Journal of the Japan Society of Naval Architects and Ocean Engineers, Vol. 19, pp.31-38, 2014. DOI: https://doi.org/10.2534/jjasnaoe.19.31
  11. K. J. Paik, S. Hwang, J. Jung, T. Lee, Y. Y. Lee, H. Ahn and S. H. Van, "Investigation on the wake evolution of contra-rotating propeller using RANS computation and SPIV measurement", International Journal of Naval Architecture and Ocean Engineering, Vol. 7, No. 3, pp.595-609, 2015. DOI: https://doi.org/10.1515/ijnaoe-2015-0042
  12. M. C. Kim, M. S. Song, H. J. Kang and D. E. Kim, "A Numerical and Experimental Procedure for the Open Water Characteristics of Contra-Rotating Propellers for EEDI Improvement", Journal of the Korean Society for Marine Environment and Energy, Vol. 16, No. 4, pp.248-254, 2013. DOI: http://dx.doi.org/10.7846/JKOSMEE.2013.16.4.248
  13. M. Ko, A Study on Analysis of Shaft Alignment for the Contra-rotating Propeller, Master's thesis, Pusan National University, Pusan, Korea, 2009.
  14. S. H. Shin, "Effects of Propeller Forces on the Propeller Shaft Bearing during Going Straight and Turning of Ship", Journal of the Society of Naval Architects of Korea, Vol. 52, No. 1, pp.61-69, 2015. DOI: https://doi.org/10.3744/SNAK.2015.52.1.61
  15. BV, Rules for the Classification of Ships, Pt.C Ch.1 Sec.7, 2003.
  16. DNV, Rules for Classification of Ships, Pt.4 Ch.4 Sec.1, 2003.
  17. KR, Rules for Classification Steel Ships, Pt.5 Ch.3 Sec.3, 2003.
  18. NK, Rules for the Survey and Construction of Steel Ship, Pt.D Ch.6, 2003.
  19. B. J. Vartdal, T. Gjestland and T. I. Arvidsen, "Lateral Propeller Forces and their Effects on Shaft Bearings", First International Symposium on Marine Propulsors, Trondheim Norway, pp.475-481, June 2009.