DOI QR코드

DOI QR Code

2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models

  • Merzoug, Mostafa (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Bourada, Mohamed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Sekkal, Mohamed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Abir, Ali Chaibdra (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Chahrazed, Belmokhtar (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Benyoucef, Samir (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology) ;
  • Benachour, Abdelkader (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology)
  • 투고 : 2020.05.11
  • 심사 : 2020.07.23
  • 발행 : 2020.08.25

초록

This paper is concerned with the thermoelastic bending of FG beams resting on two-layer elastic foundations. One of these layers is Winkler springs with a variable modulus while the other is considered as a shear layer with a constant modulus. The beams are considered simply supported and subjected to thermo-mechanical loading. Temperature-dependent material properties are considered for the FG beams, which are assumed to be graded continuously across the panel thickness. The used theories contain undetermined integral terms which lead to a reduction of unknowns functions. Several micromechanical models are used to estimate the effective two-phase FG material properties as a function of the particles' volume fraction considering thermal effects. Analytical solutions for the thermo-mechanical bending analysis are obtained based on Navier's method that satisfies the boundary conditions. Finally, the numerical results are provided to reveal the effect of explicit micromechanical models, geometric parameters, temperature distribution and elastic foundation parameters on the thermoelastic response of FG beams.

키워드

과제정보

Authors would like to acknowledge the support provided by the Directorate General for Scientific Research and Technological Development (DGRSDT).

참고문헌

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  2. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  3. Akbarzadeh, A.H., Abedini, A. and Chen, Z.T. (2015), "Effect of micromechanical models on structural responses of functionally graded plates", Compos. Struct., 119, 598-609. http://doi.org/10.1016/j.compstruct.2014.09.031.
  4. Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.
  5. Al-Furjan, M.S.H., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2020), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 1-8. https://doi.org/10.1007/s00366-020-01088-7
  6. Al-Maliki, A.F.H., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Des., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
  7. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  8. Arioui, O., Belakhdar, K., Kaci, A. and Tounsi, A. (2018), "Thermal buckling of FGM beams having parabolic thickness variation and temperature dependent materials", Steel Compos. Struct., 27(6), 777-788. https://doi.org/10.12989/scs.2018.27.6.777.
  9. Asghar, S., Naeem, M.N., Hussain, M., Taj, M. and Tounsi, A. (2020), "Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133
  10. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R and Alwabli, S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundation", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.
  11. Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.
  12. Bachir Bouiadjra, R., Mahmoudi, A., Benyoucef, S., Tounsi, A. and Bernard, F. (2018), "Analytical investigation of bending response of FGM plate using a new quasi 3D shear deformation theory: Effect of the micromechanical models", Struct. Eng. Mech., 66(3), 317-328. https://doi.org/10.12989/sem.2018.66.3.317.
  13. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  14. Barati, M.R. (2017), "Investigating dynamic response of porous inhomogeneous nanobeams on hybrid Kerr foundation under hygro-thermal loading", Appl. Phys. A., 123(5), 332. https://doi.org/10.1007/s00339-017-0908-3.
  15. Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699
  16. Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.Sh. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  17. Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2017.2.3.165.
  18. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  19. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  20. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  21. Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, 25(6), 485-495. https://doi.org/10.12989/cac.2020.25.6.485.
  22. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory" Comput. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  23. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191-208. https://doi.org/10.12989/anr.2019.7.3.191.
  24. Chaabane L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  25. Chen, M., Jin, G., Zhang, Y., Niu, F. and Liu, Z. (2019), "Three-dimensional vibration analysis of beams with axial functionally graded materials and variable thickness", Compos. Struct., 207, 304-322. https://doi.org/10.1016/j.compstruct.2018.09.029.
  26. Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, S.R. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
  27. Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055.
  28. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  29. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  30. Ebrahimi, F. and Jafari, A., (2018), "A four-variable refined shear-deformation beam theory for thermo-mechanical vibration analysis of temperature-dependent FGM beams with porosities", Mech. Adv. Mater. Struct., 25(3), 212-224. https://doi.org/10.1080/15376494.2016.1255820.
  31. Eisenberger, M. and Clastornik, J. (1987), "Vibrations and buckling of a beam on a variable Winkler elastic foundation", J. Sound Vib., 115(2), 233-241. https://doi.org/10.1016/0022-460X(87)90469-X.
  32. Esfahani, S., Kiani, Y. and Eslami, M. (2013), "Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations", Int. J. Mech. Sci., 69, 10-20. https://doi.org/10.1016/j.ijmecsci.2013.01.007.
  33. Fahsi, B., Bouiadjra, R.B., Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2019), "Assessing the effects of porosity on bending, buckling and vibration of FG beam resting on elastic foundation using a new refined quasi-3d theory", Mech. Compos. Mater., 55(2), 219-230. https://doi.org/10.1007/s11029-019-09805-0.
  34. Fallah, A. and Aghdam, M.M. (2012), "Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation", Compos. Part B Eng., 43(3), 1523-1530. https://doi.org/10.1016/j.compositesb.2011.08.041.
  35. Frikha, A., Hajlaoui, A., Wali, M. and Dammak, F., (2016), "A new higher order C0 mixed beam element for FGM beams analysis", Compos. Part B Eng., 106, 181-189. https://doi.org/10.1016/j.compositesb.2016.09.024.
  36. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.
  37. Gasik, M. (1995), "Scand. Ch226", Acta Polytech., 72.
  38. Ghiasian, S.E., Kiani, Y. and Eslami, M.R. (2015), "Nonlinear thermal dynamic buckling of FGM beams", Eur. J. Mech. A Solids, 54, 232-242. https://doi.org/10.1016/j.euromechsol.2015.07.004.
  39. Gul, U., Aydogdu, M. and Karacam, F. (2019), "Dynamics of a functionally graded Timoshenko beam considering new spectrums", Compos. Struct., 207, 273-291. https://doi.org/10.1016/j.compstruct.2018.09.021.
  40. Gupta, V. and Anandkumar, J. (2019), "Phenol removal by tailor-made polyamide-fly ash composite membrane: Modeling and optimization", Membr. Water Treat., 10(6), 431-440. https://doi.org/10.12989/mwt.2019.10.6.431.
  41. Halpin, J.C. (1969), "Effects of environmental factors on composite materials", Technical Report AFML-TR Ohio, U.S.A., 67-423.
  42. Hussain, M., Naeem, M.N., Khan, M.S. and Tounsi, A. (2020a), "Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports", Comput. Concrete, 25(5), 411-425. https://doi.org/10.12989/cac.2020.25.5.411.
  43. Hussain, M., Naeem, M.N., Taj, M. and Tounsi, A. (2020b), "Simulating vibrations of vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., 8(3), 215-228. https://doi.org/10.12989/anr.2020.8.3.215.
  44. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431
  45. Jaesang, Y. and Addis, K. (2014), "Modeling functionally graded materials containing multiple heterogeneities", Acta Mech., 225(7), 1931-1943. https://doi.org/10.1007/s00707-013-1033-9.
  46. Kaci, A., Houari, M.S.A, Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/sem.2018.65.5.621.
  47. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Adda Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  48. Kar, V.R. and Panda, S.K. (2015a), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., 53(4), 661-679. https://doi.org/10.12989/sem.2015.53.4.661.
  49. Kar, V.R. and Panda, S.K. (2015b), "Thermoelastic analysis of functionally graded doubly curved shell panels using nonlinear finite element method", Compos. Struct., 129, 202-212. https://doi.org/10.1016/j.compstruct.2015.04.006.
  50. Kar, V.R. and Panda, S.K. (2016), "Nonlinear thermomechanical behavior of functionally graded material cylindrical/hyperbolic/elliptical shell panel with temperature-dependent and temperature-independent properties", J. Press. Vess. T., 138(6), 061202. https://doi.org/10.1115/1.4033701.
  51. Kar, V.R. and Panda, S.K. (2020), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
  52. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033. http://doi.org/10.12989/scs.2015.19.4.1011.
  53. Karamanli, A. (2017), "Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3d shear deformation theory", Compos. Struct., 174, 70-86. https://doi.org/10.1016/j.compstruct.2017.04.046.
  54. Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  55. Karami, B., Janghorban, M. and Tounsi, A. (2019c), "On pre-stressed functionally graded anisotropic nanoshell in magnetic field", J. Brazil. Soc. Mech. Sci. Eng., 41(11), 495. https://doi.org/10.1007/s40430-019-1996-0.
  56. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019b), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with grapheme nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  57. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2020), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., 36(3), 807-821. https://doi.org/10.1007/s00366-019-00732-1.
  58. Khosravi, F., Hosseini, S.A. and Tounsi, A. (2020), "Forced axial vibration of a single-walled carbon nanotube embedded in elastic medium under various moving forces", J. Nano Res., 63, 112-133. https://doi.org/10.4028/www.scientific.net/jnanor.63.112.
  59. Kim, I., Zhu, T., Jeon, C.H. and Lawler, D.F. (2020), "Detachment of nanoparticles in granular media filtration", Membr. Water Treat., 11(1), 1-10. https://doi.org/10.12989/mwt.2020.11.1.001.
  60. Kolahchi, R., Safaria, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265 .https://doi.org/10.1016/j.compstruct.2016.05.023.
  61. Kumar, R. and Devi, S. (2017), "Response of thermoelastic functionally graded beam due to ramp type heating in modified couple stress with dual-phase-lag model", Multidisciplin. Model. Mater. Struct., 13(3), 471-488. https://doi.org/10.1108/MMMS-05-2017-0034.
  62. Mahapatra, T.R., Kar, V.R., Panda, S.K. and Mehar, K. (2017), "Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading", J. Therm. Stresses, 40(9), 1184-1199. https://doi.org/10.1080/01495739.2017.1302788.
  63. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016), "Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Des., 12(2), 153-171. https://doi.org/10.1007/s10999-015-9299-9.
  64. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A. and Adda Bedia, E.A. (2018), "On the effect of the micromechanical models on the free vibration of rectangular FGM plate resting on elastic foundation", Struct. Eng. Mech., 14(2), 117-128. https://doi.org/10.12989/eas.2018.14.2.117.
  65. Mantari, J.L. and Yarasca, J. (2015), "A simple and accurate generalized shear deformation theory for beams", Compos. Struct., 134, 593-601. http://doi.org/10.1016/j.compstruct.2015.08.073.
  66. Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Adda Bedia, E.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetricS-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
  67. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  68. Mehar, K. and Panda, S.K. (2017a), "Numerical investigation of nonlinear thermomechanical deflection of functionally graded CNT reinforced doubly curved composite shell panel under different mechanical loads", Compos. Struct., 161, 287-298. https://doi.org/10.1016/j.compstruct.2016.10.135.
  69. Mehar, K. and Panda, S.K. (2017b), "Thermoelastic analysis of FG-CNT reinforced shear deformable composite plate under various loadings", Int. J. Comput. Meth., 14(2), 1750019. https://doi.org/10.1142/S0219876217500190.
  70. Mehar, K. and Panda, S.K. (2017c), "Nonlinear static behavior of FG-CNT reinforced composite flat panel under thermomechanical load", J. Aerospace Eng., 30(3), 04016100. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000706.
  71. Mehar, K. and Panda, S.K. (2018b), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. http://doi.org/10.12989/sem.2018.67.6.565.
  72. Mehar, K. and Panda, S.K. (2018c), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircr. Eng. Aerosp. Tech., 90(1), 11-23. https://doi.org/10.1108/AEAT-11-2015-0237.
  73. Mehar, K. and Panda, S.K. (2019), "Theoretical deflection analysis of multi-walled carbon nanotube reinforced sandwich panel and experimental verification", Compos. Part B Eng., 167, 317-328. https://doi.org/10.1016/j.compositesb.2018.12.058.
  74. Mehar, K. and Panda, S.K. (2020), "Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading", Acta Mech., 231(3), 1105-1123. https://doi.org/10.1007/s00707-019-02579-5.
  75. Mehar, K. and Panda, S.K. (2018a), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Tech., 37(6), 1643-1657. https://doi.org/10.1002/adv.21821.
  76. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018b), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite-element method", Scientia Iranica T. B Mech. Eng., 25(5), 2722-2737. https://doi.org/10.24200/SCI.2017.4525.
  77. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2019), "Large deformation bending responses of nanotube-reinforced polymer composite panel structure: Numerical and experimental analyses", Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 233(5), 1695-1704. https://doi.org/10.1177/0954410018761192.
  78. Mehar, K., Panda, S.K. and Patle, B.K. (2018a), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Composites, 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
  79. Mishnaevsky, J.L. (2007), Computational Mesomechanics of Composites, John Wiley & Sons, U.K.
  80. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall., 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3.
  81. Nemati, A.R. and Mahmoodabadi, M.J. (2019), "Effect of micromechanical models on stability of functionally graded conical panels resting on Winkler-Pasternak foundation in various thermal environments", Arch. Appl. Mech., 1-33. https://doi.org/10.1007/s00419-019-01646-6.
  82. Nguyen, T.K., Vo, T.P. and Thai, H.T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B Eng., 55, 147-157. http://doi.org/10.1016/j.compositesb.2013.06.011.
  83. Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidisciplin. Model. Mater. Struct., 14(2), 322-338. http://doi.org/10.1108/MMMS-08-2017-0082.
  84. Panjehpour, M., Loh, E.W.K. and Deepak, TJ. (2018), "Structural Insulated Panels: State-of-the-Art", Trends Civil Eng. Architect., 3(1) 336-340. http://doi.org/10.32474/TCEIA.2018.03.000151.
  85. Pradhan K.K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B Eng., 51, 175-184. http://doi.org/10.1016/j.compositesb.2013.02.027.
  86. Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321, 342-362. http://doi.org/10.1016/j.jsv.2008.09.018.
  87. Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2). 119-132. https://doi.org/10.12989/gae.2020.22.2.119
  88. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. http://doi.org/10.12989/gae.2020.22.1.065.
  89. Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput. Concrete, 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225.
  90. Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stresses, 21(6), 593-629. http://doi.org/10.1080/01495739808956165.
  91. Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325. https://doi.org/10.12989/cac.2020.25.4.311.
  92. Sahla, F., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
  93. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  94. Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
  95. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. DOI: https://doi.org/10.12989/anr.2019.7.2.089.
  96. Shadravan, S., Ramseyer, C.C. and Floyd, R.W. (2019), "Comparison of structural foam sheathing and oriented strand board panels of shear walls under lateral load", Adv. Comput. Des., 4(3), 251-272. https://doi.org/10.12989/acd.2019.4.3.251.
  97. Shariati, A., Ghabussi, A., Habibi, M., Safarpour, H., Safarpour, M., Tounsi, A. and Safa, M. (2020a), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundations", Thin-Walled Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840.
  98. Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2020b), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput. https://doi.org/10.1007/s00366-020-01024-9
  99. Shen, H.S. and. Wang, Z.X. (2014), "Nonlinear analysis of shear deformable FGM beams resting on elastic foundation in thermal environment", Int. J. Mech. Sci., 81, 195-206. http://doi.org/10.1016/j.ijmecsci.2014.02.020.
  100. Shokrieh, M.M. and Kondori, M.S. (2020), "Effects of adding graphene nanoparticles in decreasing of residual stresses of carbon/epoxy laminated composites", Compos. Mater. Eng., 2(1), 53-64. https://doi.org/10.12989/cme.2020.2.1.053.
  101. Sobhy, M. (2015), "Thermoelastic response of FGM plates with temperature-dependent properties resting on variable elastic foundations", J. Appl. Mech., 7(6), 1550082. https://doi.org/10.1142/S1758825115500829.
  102. Sun, Y., Li, S.R. and Batra, R.C. (2016), "Thermal buckling and post-buckling of FGM Timoshenko beams on nonlinear elastic foundation", J. Therm. Stresses, 39(1), 11-26. http://doi.org/10.1080/01495739.2015.1120627.
  103. Taj, M., Majeed, A., Hussain, M., Naeem, M.N., Safeer, M., Ahmad, M., Khan, H.U. and Tounsi, A. (2020), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245.
  104. Timesli, A. (2020), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2(3), 1-12. https://doi.org/10.1007/s42452-020-2182-9.
  105. Tounsi, A., Ait Atmane, H., Khiloun, M., Sekkal, M., Taleb, O. and Bousahla, A.A. (2019), "On buckling behavior of thick advanced composite sandwich plates", Compos. Mater. Eng., 1(1), 1-19. https://doi.org/https://doi.org/ https://doi.org/https://doi.org/ https://doi.org/https://doi.org/https://doi.org/https://doi.org/https://doi.org/https://doi.org/https://doi.org/https://doi.org/10.12989/cme.2019.1.1.001.
  106. Tounsi, A., Al-Dulaijan, S.U., Al-Osta, M.A., Chikh, A., Al-Zahrani, M.M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Compos. Struct., 34(4), 511-524. https://doi.org/10.12989/scs.2020.34.4.511.
  107. Trinh, L.C., Vo, T.P., Thai, H.T. and Nguyen, T.K. (2016), "An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads", Compos. Part B Eng., 100, 152-163. https://doi.org/10.1016/j.compositesb.2016.06.067.
  108. Vo, T.P., Thai, H.T., Nguyen, T.K., Inam, F. and Lee, J. (2015), "A quasi-3D theory for vibration and buckling of functionally graded sandwich beams", Compos. Struct., 119, 1-12. https://doi.org/10.1016/j.compstruct.2014.08.006.
  109. Wang, Y. and Wu, D. (2016), "Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load", Acta Astronaut., 127, 171-181. http://doi.org/10.1016/j.actaastro.2016.05.030.
  110. Wattanasakulpong, N., Prusty, B.G. and Kelly, D.W. (2011), "Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams", Int. J. Mech. Sci., 53(9), 734-743. https://doi.org/10.1016/j.ijmecsci.2011.06.005.
  111. Yahiaoui, M., Tounsi, A., Fahsi, B., Bouiadjra Bouiadjra, R. and Benyoucef, S. (2018), "The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams", Struct. Eng. Mech., 68(1), 53-66. https://doi.org/10.12989/sem.2018.68.1.053.
  112. Yas, M. H., Kamarian, S. and Pourasghar, A. (2017), "Free vibration analysis of functionally graded beams resting on variable elastic foundations using a generalized power-law distribution and GDQ method", Ann. Solid Struct. Mech., 9(1-2), 1-11. https://doi.org/10.1007/s12356-017-0046-9.
  113. Zahedinejad, P. (2015), "Free vibration analysis of functionally graded beams resting on elastic foundation in thermal environment", Int. J. Struct. Stabil. Dyn., 16(7), 1550029. https://doi.org/10.1142/S0219455415500297.
  114. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  115. Zhang, D.G. (2014), "Thermal Post-buckling and nonlinear vibration Analysis of FGM beams based on physical neutral Surface and high order shear deformation theory", Meccanica, 49(2), 2014, 283-293. https://doi.org/10.1007/s11012-013-9793-9.
  116. Zhou, D. (1993), "A general solution to vibrations of beams on variable Winkler elastic foundation", Comput. Struct., 47(1), 83-90. https://doi.org/10.1016/0045-7949(93)90281-H.
  117. Zimmerman, R.W. (1994), "Behavior of the Poisson ratio of a two-phase composite material in the high-concentration limit", Appl. Mech. Rev., 47(1), 38-44. https://doi.org/10.1115/1.3122819.
  118. Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, 26(1), In Press.
  119. Zuiker, J.R. (1995), "Functionally graded materials-choice of micromechanics model and limitations in property variation", Compos. Eng., 5(7), 807-819. https://doi.org/10.1016/0961-9526(95)00031-H.

피인용 문헌

  1. Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.439
  2. Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2020, https://doi.org/10.12989/scs.2020.37.6.695
  3. Forced vibration of a functionally graded porous beam resting on viscoelastic foundation vol.24, pp.1, 2020, https://doi.org/10.12989/gae.2021.24.1.091
  4. Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation vol.38, pp.1, 2020, https://doi.org/10.12989/scs.2021.38.1.001
  5. The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory vol.10, pp.1, 2020, https://doi.org/10.12989/anr.2021.10.1.015
  6. Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2020, https://doi.org/10.12989/cac.2021.27.1.073
  7. Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
  8. On the free vibration response of laminated composite plates via FEM vol.39, pp.2, 2020, https://doi.org/10.12989/scs.2021.39.2.149
  9. Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading vol.39, pp.2, 2021, https://doi.org/10.12989/scs.2021.39.2.215
  10. Thermoelastic response of functionally graded sandwich plates using a simple integral HSDT vol.91, pp.7, 2020, https://doi.org/10.1007/s00419-021-01973-7