DOI QR코드

DOI QR Code

Compressibility and hydraulic conductivity of calcium bentonite treated with pH-responsive polymer

  • Choo, Hyunwook (Department of Civil Engineering, Kyung Hee University) ;
  • Choi, Youngmin (SK Engineering & Construction Co., Ltd.) ;
  • Kim, Young-Uk (Department of Civil and Environmental Engineering, Myongji University) ;
  • Lee, Woojin (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Lee, Changho (Department of Civil Engineering, Chonnam National University)
  • 투고 : 2019.08.16
  • 심사 : 2020.07.16
  • 발행 : 2020.08.25

초록

Polyacrylamide (PAM) possesses high water absorption capacity and a unique pH-dependent behavior that confer large potential to enhance the engineering performance of clays. In this study, calcium bentonite was treated with a nonionic PAM. Flexible-wall permeability test and the consolidation test were performed at different pH values to evaluate the effects of PAM treatment on the hydraulic and consolidation properties. Test results demonstrate that index properties are affected by the adsorbed PAM on clay surface: a decrease in specific gravity, a decrease in net zeta potential, and an increase in liquid limit are observed due to the PAM treatment. At a given pH, the compressibility of the treated clay is greater than that of the untreated clay. However, the compression indices of untreated and treated clays can be expressed as a single function of the initial void ratio, regardless of pH. Hydraulic conductivity is reduced by PAM treatment about 5 times at both neutral and alkaline pH conditions under similar void ratios, because of the reduction in size of the water flow channel by PAM expansion. However, at acidic pH, the hydraulic conductivity of the treated clay is slightly higher than the untreated clay. This reflects that the treated bentonite with PAM can be beneficially used in barrier system for highly alkaline residues.

키워드

과제정보

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2017R1C1B2004036).

참고문헌

  1. Arasan, S. and Nasirpur, O. (2015), "The effects of polymers and fly ash on unconfined compressive strength and freeze-thaw behavior of loose saturated sand", Geomech. Eng., 8(3), 361-375. https://doi.org/10.12989/gae.2015.8.3.361.
  2. Arasan, S., Akbulut, R.K., Isik, F., Bagherinia, M. and Zaimoglu, A.S. (2016), "Behavior of polymer columns in soft clayey soil: A preliminary study", Geomech. Eng., 10(1), 95-107. https://doi.org/10.12989/gae.2016.10.1.095.
  3. ASTM-D2435 (2011), Standard test methods for one-dimensional consolidation properties of soils using incremental loading, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  4. ASTM-D2487 (2011), Standard practice for classification of soils for engineering purposes (Unified Soil Classification System), ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  5. ASTM-D4318 (2010), Standard test methods for liquid limit, plastic limit, and plasticity index of soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  6. ASTM-D5084 (2003), Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  7. ASTM-D5890 (2011), Standard test method for swell index of clay mineral component of geosynthetic clay liners, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  8. ASTM-D854 (2010), Standard test methods for specific gravity of soil solids by water pycnometer, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  9. Barvenik, F.W. (1994), "Polyacrylamide characteristics related to soil applications", Soil Sci., 158(4), 235-243. https://doi.org/10.1097/00010694-199410000-00002
  10. Besra, L., Sengupta, D., Roy, S. and Ay, P. (2004), "Influence of polymer adsorption and conformation on flocculation and dewatering of kaolin suspension", Sep. Purif. Technol., 37(3), 231-246. https://doi.org/10.1016/j.seppur.2003.10.001.
  11. Bishop, M.D., Kim, S., Palomino, A.M. and Lee, J.S. (2014), "Deformation of "tunable" clay-polymer composites", Appl. Clay Sci., 101, 265-271. https://doi.org/10.1016/j.clay.2014.08.014.
  12. Bolto, B.A. (1995), "Soluble polymers in water purification", Prog. Polym. Sci., 20(6), 987-1041. https://doi.org/10.1016/0079-6700(95)00010-D.
  13. BS-1377 (1990), "Methods of test for soils for civil engineering purposes", British Standards Institution, London, U.K.
  14. Chapman, H. (1965), Cation-Exchange Capacity, in Methods of soil analysis (Number 9 in the Series Agronomy), Part 2, American Institute of Agronomy, 891-901.
  15. Chapuis, R.P. (2012), "Predicting the saturated hydraulic conductivity of soils: A review", B. Eng. Geol. Environ., 71(3), 401-434. https://doi.org/10.1007/s10064-012-0418-7.
  16. Choo, H., Choi, Y., Lee, W. and Lee, C. (2020), "Effect of pH variations on the yield stress of calcium bentonite slurry treated with pH-responsive polymer", Materials, 13(11), 2525. https://doi.org/10.3390/ma13112525.
  17. Choo, H., Lee, W. and Lee, C. (2017), "Compressibility and small strain stiffness of kaolin clay mixed with varying amounts of sand", KSCE J. Civ. Eng., 21(6), 2152-2161. https://doi.org/10.1007/s12205-016-1787-4.
  18. Choo, H., Lee, W., Lee, C. and Burns, S.E. (2018), "Estimating porosity and particle size for hydraulic conductivity of binary mixed soils containing two different-sized silica particles", J. Geotech. Geoenviron. Eng., 144(1), 04017104. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001802.
  19. Choo, H., Yeboah, N.N. and Burns, S.E. (2016), "Small to intermediate strain properties of fly ashes with various carbon and biomass contents", Can. Geotech. J., 53(1), 35-48. https://doi.org/10.1139/cgj-2014-0069.
  20. Chorom, M. and Rengasamy, P. (1995), "Dispersion and zeta potential of pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type", Eur. J. Soil Sci., 46(4), 657-665. https://doi.org/10.1111/j.1365-2389.1995.tb01362.x.
  21. Ece, o.I., Gungor, N. and Alemdar, A. (1999), "Influences of electrolytes, polymers and a surfactant on rheological properties of bentonite-water systems", J. Incl. Phenom. Macro., 33(2), 155-168. https://doi.org/10.1023/A:1008017229876.
  22. Egloffstein, T.A. (2001), "Natural bentonites-influence of the ion exchange and partial desiccation on permeability and selfhealing capacity of bentonites used in GCLs", Geotext. Geomembranes, 19(7), 427-444. https://doi.org/10.1016/S0266-1144(01)00017-6.
  23. Goh, R., Leong, Y.K. and Lehane, B. (2011), "Bentonite slurries- zeta potential, yield stress, adsorbed additive and timedependent behaviour", Rheologica Acta, 50(1), 29-38. https://doi.org/10.1007/s00397-010-0498-x.
  24. Green, C., Foster, C., Cardon, G., Butters, G., Brick, M. and Ogg, B. (2004), "Water release from cross-linked polyacrylamide", Proceedings of the 24th Annual Hydrology Days Fort Collins, Colorado, U.S.A., April.
  25. Holtz, R.D. and Kovacs, W.D. (1981), An Introduction to Geotechnical Engineering, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
  26. Hussain, S.A., Demirci, S. and Ozbayoglu, G. (1996), "Zeta potential measurements on three clays from Turkey and effects of clays on coal flotation", J. Colloid Interf. Sci., 184(2), 535-541. https://doi.org/10.1006/jcis.1996.0649
  27. Isci, S., Unlu, C., Atici, O. and Gungor, N. (2006), "Rheology and structure of aqueous bentonite-polyvinyl alcohol dispersions", B. Mater. Sci., 29(5), 449-456. https://doi.org/10.1007/BF02914075.
  28. Jang, J., Narsilio, G. and Santamarina, J. (2011), "Hydraulic conductivity in spatially varying media-a pore-scale investigation", Geophys. J., 184(3), 1167-1179. https://doi.org/10.1111/j.1365-246X.2010.04893.x.
  29. Kang, X., Cao, J. and Bate, B. (2018), "Large-strain strength of polymer-modified kaolinite and fly ash-kaolinite mixtures", J. Geotech. Geoenviron. Eng., 145(2), 04018106. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002008.
  30. Kim, S. and Palomino, A.M. (2011), "Factors influencing the synthesis of tunable clay-polymer nanocomposites using bentonite and polyacrylamide", Appl. Clay Sci., 51(4), 491-498. https://doi.org/10.1016/j.clay.2011.01.017.
  31. Kim, S., Motyka, M.A., Palomino, A.M. and Podraza, N.J. (2012), "Conformational effects of adsorbed polymer on the swelling behavior of engineered clay minerals", Clays Clay Miner., 60(4), 363-373. https://doi.org/10.1346/CCMN.2012.0600403.
  32. Kim, S., Palomino, A.M. and Colina, C.M. (2012), "Responsive polymer conformation and resulting permeability of claypolymer nanocomposites", Mol. Simul., 38(8-9), 723-734. https://doi.org/10.1080/08927022.2012.678346.
  33. Kim, Y.U., Song, Y.K. and Kim, B.I. (2004), "Fast consolidation of soft clay due to ultrasonic energy", J. Korean Geotech. Soc., 20(2), 67-73.
  34. Kolay, P. K., Dhakal, B., Kumar, S. and Puri, V. K. (2016), "Effect of liquid acrylic polymer on geotechnical properties of finegrained soils", Int. J. Geosynth. Ground Eng., 2(4), 29. https://doi.org/10.1007/s40891-016-0071-5.
  35. Kwon, Y.M., Chang, I., Lee, M. and Cho, G.C. (2019), "Geotechnical engineering behavior of biopolymer-treated soft marine soil", Geomech. Eng., 17(5), 453-464. https://doi.org/10.12989/gae.2019.17.5.453.
  36. Mesri, G. and Olson, R.E. (1971), "Mechanisms controlling the permeability of clays", Clays Clay Miner., 19, 151-158. https://doi.org/10.1346/CCMN.1971.0190303.
  37. Mitchell, J.K. and Soga, K. (2005), Fundamentals of Soil Behavior, John Wiley & Sons, Hoboken, New Jersey, U.S.A.
  38. Murray, H. (2002), "Industrial clays case study", Mining, Minerals and Sustainable Development, 64, 1-9.
  39. Nasser, M.S. and James, A.E. (2006), "The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions", Sep. Purif. Technol., 52(2), 241-252. https://doi.org/10.1016/j.seppur.2006.04.005.
  40. Ray, S.S. and Okamoto, M. (2003), "Polymer/layered silicate nanocomposites: A review from preparation to processing", Prog. Polym. Sci., 28(11), 1539-1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002.
  41. Ruiz-Hitzky, E. and van Meerbeek, A. (2006), Clay Mineral-and Organoclay-Polymer Nanocomposite, in Handbook of Clay Science, Elsevier, Amsterdam, The Netherlands, 583-621.
  42. Santamarina, J.C., Klein, K.A., Wang, Y.H. and Prencke, E. (2002), "Specific surface: Determination and relevance", Can. Geotech. J., 39(1), 233-241. https://doi.org/10.1139/t01-077.
  43. Scalia IV.J. and Benson, C.H. (2016), "Polymer fouling and hydraulic conductivity of mixtures of sodium bentonite and a bentonite-polymer composite", J. Geotech. Geoenviron. Eng., 143(4), 04016112. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001628.
  44. Sridharan, A., Rao, S. and Murthy, N. (1986), "Liquid limit of montmorillonite soils", Geotech. Test. J., 9(3), 156-159. https://doi.org/10.1520/GTJ10623J.
  45. Terzaghi, K., Peck, R.B. and Mesri, G. (1996), Soil Mechanics in Engineering Practice, John Wiley & Sons, New York, U.S.A.
  46. Theng, B.K.G. (2012), Formation and Properties of Clay-Polymer Complexes, Elsevier, Amsterdam, The Netherlands.
  47. Tian, K., Likos, W.J. and Benson, C.H. (2019), "Polymer elution and hydraulic conductivity of bentonite-polymer composite geosynthetic clay liners", J. Geotech. Geoenviron. Eng., 145(10), 04019071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002097.
  48. Vane, L.M. and Zang, G.M. (1997), "Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability: Implications for electro-kinetic soil remediation processes", J. Hazard. Mater., 55(1), 1-22. https://doi.org/10.1016/S0304-3894(97)00010-1.
  49. Vincent, B. (1974), "The effect of adsorbed polymers on dispersion stability", Adv. Colloid Interf. Sci., 4(2), 193-277. https://doi.org/10.1016/0001-8686(74)85002-5.
  50. Yu, X. and Somasundaran, P. (1996), "Kinetics of polymer conformational changes and its role in flocculation", J. Colloid Interf. Sci., 178(2), 770-774. https://doi.org/10.1006/jcis.1996.0176.
  51. Yukselen, Y. and Kaya, A. (2003), "Zeta potential of kaolinite in the presence of alkali, alkaline earth and hydrolyzable metal ions", Water Air Soil Pollut., 145(1-4), 155-168. https://doi.org/10.1023/A:1023684213383.
  52. Zheng, X., Perreault, F. and Jang, J. (2018), "Fines adsorption on nanoparticle-coated surface", Acta Geotechnica, 13(1), 219-226. https://doi.org/10.1007/s11440-017-0528-2.