DOI QR코드

DOI QR Code

ALGEBRAICALLY CONCORDANT SEIFERT FORMS AND KNOT CONCORDANCE

  • Kim, Taehee (Department of Mathematics Konkuk University)
  • Received : 2019.09.20
  • Accepted : 2019.10.31
  • Published : 2020.07.31

Abstract

We show that if M and V are Seifert forms such that M is metabolic and has nontrivial Alexander polynomial, then there exists a knot K having Seifert form M ⊕ V that is not concordant to any knot with Seifert form V.

Keywords

References

  1. A. J. Casson and C. McA. Gordon, Cobordism of classical knots, in A la recherche de la topologie perdue, 181-199, Progr. Math., 62, Birkhauser Boston, Boston, MA, 1986.
  2. J. C. Cha, A topological approach to Cheeger-Gromov universal bounds for von Neumann $\rho$-invariants, Comm. Pure Appl. Math. 69 (2016), no. 6, 1154-1209. https://doi.org/10.1002/cpa.21597
  3. S. Chang and S. Weinberger, On invariants of Hirzebruch and Cheeger-Gromov, Geom. Topol. 7 (2003), 311-319. https://doi.org/10.2140/gt.2003.7.311
  4. J. Cheeger and M. Gromov, Bounds on the von Neumann dimension of $L^2$-cohomology and the Gauss-Bonnet theorem for open manifolds, J. Differential Geom. 21 (1985), no. 1, 1-34. http://projecteuclid.org/euclid.jdg/1214439461
  5. T. D. Cochran, K. E. Orr, and P. Teichner, Knot concordance, Whitney towers and $L^2$- signatures, Ann. of Math. (2) 157 (2003), no. 2, 433-519. https://doi.org/10.4007/annals.2003.157.433
  6. T. D. Cochran, K. E. Orr, and P. Teichner, Structure in the classical knot concordance group, Comment. Math. Helv. 79 (2004), no. 1, 105-123. https://doi.org/10.1007/s00014-001-0793-6
  7. T. Kim, An infinite family of non-concordant knots having the same Seifert form, Comment. Math. Helv. 80 (2005), no. 1, 147-155. https://doi.org/10.4171/CMH/9
  8. T. Kim, Knots having the same Seifert form and primary decomposition of knot concordance, J. Knot Theory Ramifications 26 (2017), no. 14, 1750103, 12 pp. https://doi.org/10.1142/S0218216517501036
  9. S.-G. Kim and T. Kim, Polynomial splittings of metabelian von Neumann rho-invariants of knots, Proc. Amer. Math. Soc. 136 (2008), no. 11, 4079-4087. https://doi.org/10.1090/S0002-9939-08-09372-6
  10. J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-244. https://doi.org/10.1007/BF02564525
  11. J. Levine, Invariants of knot cobordism, Invent. Math. 8 (1969), 98-110; addendum, ibid. 8 (1969), 355. https://doi.org/10.1007/BF01404613
  12. C. Livingston, Examples in concordance, arXiv:math/0101035v2, 2001.
  13. C. Livingston, Seifert forms and concordance, Geom. Topol. 6 (2002), 403-408. https://doi.org/10.2140/gt.2002.6.403
  14. K. Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387-422. https://doi.org/10.2307/1994215
  15. H. F. Trotter, On S-equivalence of Seifert matrices, Invent. Math. 20 (1973), 173-207. https://doi.org/10.1007/BF01394094