DOI QR코드

DOI QR Code

EXTREME POINTS OF THE SPACE 𝓛(2𝒍)

  • Kim, Sung Guen (Department of Mathematics Kyungpook National University)
  • Received : 2019.08.28
  • Accepted : 2019.11.25
  • Published : 2020.07.31

Abstract

We investigate extreme points of the unit ball of the space 𝓛(2𝒍).

Keywords

References

  1. R. M. Aron and M. Klimek, Supremum norms for quadratic polynomials, Arch. Math. (Basel) 76 (2001), no. 1, 73-80. https://doi.org/10.1007/s000130050544
  2. W. Cavalcante and D. Pellegrino, Geometry of the closed unit ball of the space of bilinear forms on $l^2_{\infty}$, arXiv:1603.01535v2.
  3. Y. S. Choi and S. G. Kim, The unit ball of ${\mathcal{P}}(^2l_2^2)$, Arch. Math. (Basel) 71 (1998), no. 6, 472-480. https://doi.org/10.1007/s000130050292
  4. Y. S. Choi and S. G. Kim, Extreme polynomials on $c_0$, Indian J. Pure Appl. Math. 29 (1998), no. 10, 983-989.
  5. Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space ${\mathcal{P}}(^2l_1)$, Results Math. 36 (1999), no. 1-2, 26-33. https://doi.org/10.1007/BF03322099
  6. Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces ${\mathcal{P}}(^2l^2_p)$ ($p=1,2,{\infty}$), Indian J. Pure Appl. Math. 35 (2004), no. 1, 37-41.
  7. Y. S. Choi, S. G. Kim, and H. Ki, Extreme polynomials and multilinear forms on $l_1$, J. Math. Anal. Appl. 228 (1998), no. 2, 467-482. https://doi.org/10.1006/jmaa.1998.6161
  8. S. Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. https://doi.org/10.1007/978-1-4471-0869-6
  9. J. L. Gamez-Merino, G. A. Munoz-Fernandez, V. M. Sanchez, and J. B. Seoane-Sepulveda, Inequalities for polynomials on the unit square via the Krein-Milman theorem, J. Convex Anal. 20 (2013), no. 1, 125-142.
  10. B. C. Grecu, Geometry of three-homogeneous polynomials on real Hilbert spaces, J. Math. Anal. Appl. 246 (2000), no. 1, 217-229. https://doi.org/10.1006/jmaa.2000.6783
  11. B. C. Grecu, Smooth 2-homogeneous polynomials on Hilbert spaces, Arch. Math. (Basel) 76 (2001), no. 6, 445-454. https://doi.org/10.1007/PL00000456
  12. B. C. Grecu, Geometry of 2-homogeneous polynomials on $l_p$ spaces, $1, J. Math. Anal. Appl. 273 (2002), no. 2, 262-282. https://doi.org/10.1016/S0022-247X(02)00217-2
  13. B. C. Grecu, Extreme 2-homogeneous polynomials on Hilbert spaces, Quaest. Math. 25 (2002), no. 4, 421-435. https://doi.org/10.2989/16073600209486027
  14. B. C. Grecu, Geometry of homogeneous polynomials on two-dimensional real Hilbert spaces, J. Math. Anal. Appl. 293 (2004), no. 2, 578-588. https://doi.org/10.1016/j.jmaa.2004.01.020
  15. B. C. Grecu, G. A. Munoz-Fernandez, and J. B. Seoane-Sepulveda, The unit ball of the complex ${\mathcal{P}}(^3H)$, Math. Z. 263 (2009), no. 4, 775-785. https://doi.org/10.1007/s00209-008-0438-y
  16. S. G. Kim, Exposed 2-homogeneous polynomials on ${\mathcal{P}}(^2l^2_P)$ for $1{\leq}p{\leq}{\infty}$, Math. Proc. R. Ir. Acad. 107 (2007), no. 2, 123-129. https://doi.org/10.3318/PRIA.2007.107.2.123
  17. S. G. Kim, The unit ball of ${\mathcal{L_s(^2l^2_{\infty})}$, Extracta Math. 24 (2009), no. 1, 17-29.
  18. S. G. Kim, The unit ball of ${\mathcal{P}}(^2D_*(1,\;W)^2)$, Math. Proc. R. Ir. Acad. 111A (2011), no. 2, 79-94.
  19. S. G. Kim, The unit ball of ${\mathcal{L}}_s(^2d_*(1,\;w)^2)$, Kyungpook Math. J. 53 (2013), no. 2, 295-306. https://doi.org/10.5666/KMJ.2013.53.2.295
  20. S. G. Kim, Smooth polynomials of ${\mathcal{P}}(^2D_*(1,\;W)^2)$, Math. Proc. R. Ir. Acad. 113A (2013), no. 1, 45-58. https://doi.org/10.3318/PRIA.2013.113.05
  21. S. G. Kim, Extreme bilinear forms of ${\mathcal{L}}(^2d_*(1,\;w)^2)$, Kyungpook Math. J. 53 (2013), no. 4, 625-638. https://doi.org/10.5666/KMJ.2013.53.4.625
  22. S. G. Kim, Exposed symmetric bilinear forms of ${\mathcal{L}}_s(^2d_*(1,\;w)^2)$, Kyungpook Math. J. 54 (2014), no. 3, 341-347. https://doi.org/10.5666/KMJ.2014.54.3.341
  23. S. G. Kim, Polarization and unconditional constants of ${\mathcal{P}}(^2d_*(1,\;w)^2)$, Commun. Korean Math. Soc. 29 (2014), no. 3, 421-428. https://doi.org/10.4134/CKMS.2014.29.3.421
  24. S. G. Kim, Exposed bilinear forms of ${\mathcal{L}}(^2d_*(1,\;w)^2)$, Kyungpook Math. J. 55 (2015), no. 1, 119-126. https://doi.org/10.5666/KMJ.2015.55.1.119
  25. S. G. Kim, Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space, Mediterr. J. Math. 13 (2016), no. 5, 2827-2839. https://doi.org/10.1007/s00009-015-0658-4
  26. S. G. Kim, The unit ball of ${\mathcal{L}}(^2{\mathbb{R}}^2_{h(w)})$, Bull. Korean Math. Soc. 54 (2017), no. 2, 417-428. https://doi.org/10.4134/BKMS.b150851
  27. S. G. Kim, Extremal problems for ${\mathcal{L}}_s(^2{\mathbb{R}}^2_{h(w)})$, Kyungpook Math. J. 57 (2017), no. 2, 223- 232. https://doi.org/10.5666/KMJ.2017.57.2.223
  28. S. G. Kim, The unit ball of ${\mathcal{L}}_s(^2l^3_{\infty})$, Comment. Math. 57 (2017), no. 1, 1-7. https://doi.org/10.14708/cm.v57i1.1230
  29. S. G. Kim, The geometry of ${\mathcal{L}}_s(^3l^2_{\infty})$, Commun. Korean Math. Soc. 32 (2017), no. 4, 991-997. https://doi.org/10.4134/ckms.c170016
  30. S. G. Kim, Extreme 2-homogeneous polynomials on the plane with a hexagonal norm and applications to the polarization and unconditional constants, Studia Sci. Math. Hungar. 54 (2017), no. 3, 362-393. https://doi.org/10.1556/012.2017.54.3.1371
  31. S. G. Kim, The geometry of ${\mathcal{L}}(^3l^2_{\infty})$ and optimal constants in the Bohnenblust-Hille inequality for multilinear forms and polynomials, Extracta Math. 33 (2018), no. 1, 51-66. https://doi.org/10.17398/2605-5686.33.1.51
  32. S. G. Kim, Extreme bilinear forms on ${\mathbb{R}}^n$ with the supremum norm, Period. Math. Hungar. 77 (2018), no. 2, 274-290. https://doi.org/10.1007/s10998-018-0246-z
  33. S. G. Kim, Exposed polynomials of {\mathcal{P}}(^2{\mathbb{R}}^2_{h(\frac{1}{2})}), Extracta Math. 33 (2018), no. 2, 127-143. https://doi.org/10.17398/2605-5686.33.2.127
  34. S. G. Kim, The unit ball of the space of bilinear forms on ${\mathbb{R}}^3$ with the supremum norm, Commun. Korean Math. Soc. 34 (2019), no. 2, 487-494. https://doi.org/10.4134/CKMS.c180111
  35. S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc. 131 (2003), no. 2, 449-453. https://doi.org/10.1090/S0002-9939-02-06544-9
  36. A. G. Konheim and T. J. Rivlin, Extreme points of the unit ball in a space of real polynomials, Amer. Math. Monthly 73 (1966), 505-507. https://doi.org/10.2307/2315472
  37. L. Milev and N. Naidenov, Strictly definite extreme points of the unit ball in a polynomial space, C. R. Acad. Bulgare Sci. 61 (2008), no. 11, 1393-1400.
  38. L. Milev and N. Naidenov, Semidefinite extreme points of the unit ball in a polynomial space, J. Math. Anal. Appl. 405 (2013), no. 2, 631-641. https://doi.org/10.1016/j.jmaa.2013.04.026
  39. G. A. Munoz-Fernandez, D. Pellegrino, J. B. Seoane-Sepulveda, and A. Weber, Supremum norms for 2-homogeneous polynomials on circle sectors, J. Convex Anal. 21 (2014), no. 3, 745-764.
  40. G. A. Munoz-Fernandez, S. Gy. Revesz, and J. B. Seoane-Sepulveda, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand. 105 (2009), no. 1, 147-160. https://doi.org/10.7146/math.scand.a-15111
  41. G. A. Munoz-Fernandez and J. B. Seoane-Sepulveda, Geometry of Banach spaces of trinomials, J. Math. Anal. Appl. 340 (2008), no. 2, 1069-1087. https://doi.org/10.1016/j.jmaa.2007.09.010
  42. S. Neuwirth, The maximum modulus of a trigonometric trinomial, J. Anal. Math. 104 (2008), 371-396. https://doi.org/10.1007/s11854-008-0028-2
  43. R. A. Ryan and B. Turett, Geometry of spaces of polynomials, J. Math. Anal. Appl. 221 (1998), no. 2, 698-711. https://doi.org/10.1006/jmaa.1998.5942