DOI QR코드

DOI QR Code

데이터 품질관리 평가 모델에 관한 연구

A study on the data quality management evaluation model

  • 김형섭 (한양대학교 일반대학원 경영컨설팅학과)
  • Kim, Hyung-Sub (Hanyang University Student, Division of Management Consulting)
  • 투고 : 2020.04.27
  • 심사 : 2020.07.20
  • 발행 : 2020.07.28

초록

본 연구는 데이터 품질관리 평가 모델에 관한 연구이다. 정보통신기술이 고도화되고 저장 및 관리에 대한 중요성이 증가를 하기 시작하며서 데이터에 대한 괌심이 증가를 하고 있다. 특히 최근에는 4차산업혁명과 인공지능에 대해 관심이 증가를 하고 있다. 4차산업혁몽과 인공지능 시대에 중요한 것이 바로 데이터이다. 21세기는 데이터가 새로운 원유로서의 역할을 수행할 것으로 보인다. 이러한 데이터의 품질에 대한 관리가 매우 중요하다고 할 수 있다. 그러나 실무적인 차원에서의 연구는 진행이 되고 있으나 학문적 차원의 연구는 부족한 실정이다. 이에 본 연구에서는 전문가를 대상으로 데이터 품질관리에 영향을 미치는 요인에 대해 살펴보고 시사점을 제시하였다. 분석결과 데이터 품질관리의 중요도에는 차이가 있는 것으로 나타났다.

This study is about the data quality management evaluation model. As the information and communication technology is advanced and the importance of storage and management begins to increase, the guam feeling for data is increasing. In particular, interest in the fourth industrial revolution and artificial intelligence has been increasing recently. Data is important in the fourth industrial revolution and the era of artificial intelligence. In the 21st century, data will likely play a role as a new crude oil. It can be said that the management of the quality of this data is very important. However, research is being conducted at a practical level, but research at an academic level is insufficient. Therefore, this study examined factors affecting data quality management for experts and suggested implications. As a result of the analysis, there was a difference in the importance of data quality management.

키워드

참고문헌

  1. Park, S. T., Kim, D. Y. & Li, G. (2020). An analysis of environmental big data through the establishment of emotional classification system model based on machine learning: focus on multimedia contents for portal applications. Multimedia Tools and Applications, 1-19.
  2. Park, S. T., Li, G. & Hong, J. C. (2018). A study on smart factory-based ambient intelligence context-aware intrusion detection system using machine learning. Journal of Ambient Intelligence and Humanized Computing, 1-8.
  3. Park, S. T. & Oh, M. R. (2019). An empirical study on the influential factors affecting continuous usage of mobile cloud service. Cluster Computing, 22(1), 1873-1887. https://doi.org/10.1007/s10586-017-1518-8
  4. Park, S. T., Jung, J. R. & Liu, C. (2019). A study on policy measure for knowledge-based management in ICT companies: focused on appropriability mechanisms. Information Technology and Management, 1-13.
  5. Park, S. T., Lee, S. W. & Kang, T. G. (2018). A study on the trend of cloud service and security through text mining technique. International Journal of Engineering & Technology, 7(2.33), 127-132. https://doi.org/10.14419/ijet.v7i2.33.13869
  6. Gartner, https://www.gartner.com/en
  7. Korea Institute for Health and Social Affairs. (2013). The basic direction of social security in the next 5 years and Finding core tasks.
  8. Miller, J. S. (1996). U.S. Patent No. 5,506,984. Washington, DC: U.S. Patent and Trademark Office.
  9. Redman, T. C. (2001). Data quality: the field guide. Digital press.
  10. Korea Data Agency. (2012). Data Quality Management Guidelines.
  11. An, H. J. (2016). A Business Performance Study of Data Quality Management for Big Data Adoption - Focused on Corporate Data Quality Management Process -, Kookmin University.
  12. Park, G. H. (2017). The Determinant for the Usage of Big Data in Administrative Service : mainly on the Quality Control of Data, Keimyung University.
  13. Firth, C. P. (1996, October). Data Quality in Practice: Experience from the Front Line. In IQ (pp. 65-71).
  14. Segev, A. & Zhao, J. L. (1996). Rule activation techniques in active database systems. Journal of Intelligent Information Systems, 7(2), 173-194. https://doi.org/10.1007/BF00127781
  15. Wang, H., Long, Q., Marty, S. D., Sassa, S. & Lin, S. (1998). A zebrafish model for hepatoerythropoietic porphyria. Nature genetics, 20(3), 239-243. https://doi.org/10.1038/3041
  16. English, L. P. (1999). Improving data warehouse and business information quality. methods for reducing costs and increasing profits (Vol. 1). New York: Wiley.
  17. Xu, Y., Olman, V. & Xu, D. (2002). Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees. Bioinformatics, 18(4), 536-545. https://doi.org/10.1093/bioinformatics/18.4.536
  18. Otto, B., Wende, K., Schmidt, A. & Osl, P. (2007). Towards a framework for corporate data quality management.
  19. Kim, Y. K., Lee, S. J. & Park, S. T. (2010). Selection of important factors for Patent Valuation using Delphi Method. Entrue Journal of Information Technology, 9(1), 7-17.
  20. Park, S. T., Lee, S. J. & Kim, Y. K. (2011). Weight Differences of Patent Valuation Factors by Industries. Journal of Digital Convergence, 9(3), 105-116. https://doi.org/10.14400/JDPM.2011.9.3.105
  21. Kim, Y. K., Lee, S. J. & Park, S. T. (2011). Establishing the Importance Weight of Patent Valuation Criteria for Product Categories through AHP Analysis. Entrue Journal of Information Technology, 10(1), 115-127.
  22. Lee, S. J., Kim, Y. K. & Park, S. T. (2013). Appropriability Mechanism Strategy for Domestic IT Manufacturing Companies. Journal of Digital Convergence, 11(11), 233-242. https://doi.org/10.14400/JDPM.2013.11.11.233