참고문헌
- Park, S. T., Kim, D. Y. & Li, G. (2020). An analysis of environmental big data through the establishment of emotional classification system model based on machine learning: focus on multimedia contents for portal applications. Multimedia Tools and Applications, 1-19.
- Park, S. T., Li, G. & Hong, J. C. (2018). A study on smart factory-based ambient intelligence context-aware intrusion detection system using machine learning. Journal of Ambient Intelligence and Humanized Computing, 1-8.
- Park, S. T. & Oh, M. R. (2019). An empirical study on the influential factors affecting continuous usage of mobile cloud service. Cluster Computing, 22(1), 1873-1887. https://doi.org/10.1007/s10586-017-1518-8
- Park, S. T., Jung, J. R. & Liu, C. (2019). A study on policy measure for knowledge-based management in ICT companies: focused on appropriability mechanisms. Information Technology and Management, 1-13.
- Park, S. T., Lee, S. W. & Kang, T. G. (2018). A study on the trend of cloud service and security through text mining technique. International Journal of Engineering & Technology, 7(2.33), 127-132. https://doi.org/10.14419/ijet.v7i2.33.13869
- Gartner, https://www.gartner.com/en
- Korea Institute for Health and Social Affairs. (2013). The basic direction of social security in the next 5 years and Finding core tasks.
- Miller, J. S. (1996). U.S. Patent No. 5,506,984. Washington, DC: U.S. Patent and Trademark Office.
- Redman, T. C. (2001). Data quality: the field guide. Digital press.
- Korea Data Agency. (2012). Data Quality Management Guidelines.
- An, H. J. (2016). A Business Performance Study of Data Quality Management for Big Data Adoption - Focused on Corporate Data Quality Management Process -, Kookmin University.
- Park, G. H. (2017). The Determinant for the Usage of Big Data in Administrative Service : mainly on the Quality Control of Data, Keimyung University.
- Firth, C. P. (1996, October). Data Quality in Practice: Experience from the Front Line. In IQ (pp. 65-71).
- Segev, A. & Zhao, J. L. (1996). Rule activation techniques in active database systems. Journal of Intelligent Information Systems, 7(2), 173-194. https://doi.org/10.1007/BF00127781
- Wang, H., Long, Q., Marty, S. D., Sassa, S. & Lin, S. (1998). A zebrafish model for hepatoerythropoietic porphyria. Nature genetics, 20(3), 239-243. https://doi.org/10.1038/3041
- English, L. P. (1999). Improving data warehouse and business information quality. methods for reducing costs and increasing profits (Vol. 1). New York: Wiley.
- Xu, Y., Olman, V. & Xu, D. (2002). Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees. Bioinformatics, 18(4), 536-545. https://doi.org/10.1093/bioinformatics/18.4.536
- Otto, B., Wende, K., Schmidt, A. & Osl, P. (2007). Towards a framework for corporate data quality management.
- Kim, Y. K., Lee, S. J. & Park, S. T. (2010). Selection of important factors for Patent Valuation using Delphi Method. Entrue Journal of Information Technology, 9(1), 7-17.
- Park, S. T., Lee, S. J. & Kim, Y. K. (2011). Weight Differences of Patent Valuation Factors by Industries. Journal of Digital Convergence, 9(3), 105-116. https://doi.org/10.14400/JDPM.2011.9.3.105
- Kim, Y. K., Lee, S. J. & Park, S. T. (2011). Establishing the Importance Weight of Patent Valuation Criteria for Product Categories through AHP Analysis. Entrue Journal of Information Technology, 10(1), 115-127.
- Lee, S. J., Kim, Y. K. & Park, S. T. (2013). Appropriability Mechanism Strategy for Domestic IT Manufacturing Companies. Journal of Digital Convergence, 11(11), 233-242. https://doi.org/10.14400/JDPM.2013.11.11.233