DOI QR코드

DOI QR Code

Superiority comparison of biologically derived algicidal substances (naphthoquinone derivative) with other optional agents using microcosm experiments

Microcosm 실험을 이용한 생물유래 살조물질 Naphthoquinone 유도체의 유해 남조류 제어효과 및 기존물질과의 우수성 비교

  • Received : 2019.12.31
  • Accepted : 2020.03.10
  • Published : 2020.03.31

Abstract

Bloom-forming toxic cyanobacteria Microcystis spp. are common in the summer season in temperate freshwater ecosystems. Often, it leads to the degradation of water quality and affects the quality of drinking water. In a previous study, NQ (naphthoquinone) compounds were shown to be effective, selective, and ecologically safe algicides for Microcystis spp. blooms. To analyze the superiority of developed NQ derivatives, we conducted a microcosm experiment using clay, which is frequently used in South Korea. Similar to previous studies, the NQ 40 and NQ 2-0 compounds showed high algicidal activities of 99.9% and 99.6%, respectively, on Microcystis spp. at low concentrations (≥1 μM) and enhanced phytoplankton species diversity. However, when treated with clay, a temporary algicidal effect was seen at the beginning of the experiment that gradually increased at the end. In addition, treatment with the NQ compounds did not affect either the abiotic or biological factors, and similar trends were observed with the control. These results showed that the NQ 2-0 compound was more effective, with no ecosystem disturbance, and more economical than the currently used clay. These results suggest that NQ 2-0 compound could be a selective, economically and ecologically safe algicide to mitigate harmful cyanobacterial blooms in the field.

유해 남조류 Microcystis 종에 의한 녹조현상은 매년 빈번하게 일어나며, 이로 인한 수자원의 질적 변화와 먹는 물확보에 문제가 발생하고 있다. Microcystis 종에 의한 피해를 막고자 개발된 naphthoquinone (NQ) 유도체 물질의 장점 분석을 위해 국내에서 빈번히 사용되는 황토를 이용한 microcosm 실험을 하고자 하였다. 그 결과, NQ 40, NQ 2-0 물질은 선행 연구 결과와 동일하게 유해 남조류 Microcystis 종을 선택적으로 99.9%, 99.6% 제어했으며, 식물플랑크톤 종 다양성을 증진시켰다. 그러나, 황토를 처리한 실험구는 실험 초기 일시적인 조류 제어효과를 보인 후 다시 증가하였으며, 유용 조류를 포함한 모든 식물플랑크톤에게 적용되어 다른 조류의 성장은 이루어지지 않았다. 뿐만 아니라, NQ 물질을 처리한 처리구는 비생물학적, 생물학적요인 모두 영향을 미치지 않았으며, 대조구와 유사한 경향이 관찰되었다. 따라서, 최종적으로 개량된 유해 남조류 제어물질 NQ 2-0은 높은 살조효과, 선택적 제어효과, 저독성, 자연분해에 의한 비잔류성 뿐만 아니라, 편의성 및 경제성까지 갖춘 새로운 살조물질로서 현재까지 개발된 살조물질보다 현장 생태계 적용에 가장 적합한 친환경 녹조제어 물질이라고 판단된다.

Keywords

References

  1. APHA. 2005. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF, Washington D.C., USA.
  2. Bates B, Z Kundzewicz and S Wu. 2008. Climate Change and Water. Intergovernmental Panel on Climate Change Secretariat. Geneva, Switzerland.
  3. Biggins J. 1990. Evaluation of selected benzoquinones, naphthoquinones, and anthraquinones as replacements for phylloquinone in the A1 acceptor site of the photosystem I reaction center. Biochemistry 29:7259-7264. https://doi.org/10.1021/bi00483a014
  4. Binder RG, ME Benson and RA Flath. 1989. Eight 1, 4-naphthoquinones from Juglans. Phytochemistry 28:2799-2801. https://doi.org/10.1016/S0031-9422(00)98092-0
  5. Byeon DH. 2013. Synthesis of naphthoquinone derivatives as algicides against harmful algal species. MS thesis, ChoSun University. pp. 1-62.
  6. Crouch IJ, JF Finnien and J van Staden. 1990. Studies on the isolation of plumbagin from in vitro and in vivo grown Drosera species. Plant Cell Tiss. Org. 21:79-82. https://doi.org/10.1007/BF00034496
  7. Dong Y, SF Chin, E Blanco, EA Bey, W Kabbani, XJ Xie, WG Bornmann, DA Boothman and J Gao. 2009. Intratumoral delivery of ${\beta}$-lapachone via polymer implants for prostate cancer therapy. Clin. Cancer Res. 15:131-139. https://doi.org/10.1158/1078-0432.CCR-08-1691
  8. Foflonker F. 2009. Biological methods to control common algal bloom-forming species. Basic Biotechnol. eJournal 5:19-24.
  9. Gumbo RJ, G Ross and ET Cloete. 2008. Biological control of Microcystis dominated harmful algal blooms. Afr. J. Biotechnol. 7:4765-4773.
  10. Gumbo JR, G Ross and TE Cloete. 2010. The isolation and identification of predatory bacteria from a Microcystis algal bloom. Afr. J. Biotechnol. 9:663-671. https://doi.org/10.5897/AJB09.834
  11. Han SI, Y Park and YE Choi. 2018. Application of antimicrobial peptides against Microcystis aeruginosa to control harmful algal blooms. Korean J. Environ. Biol. 36:601-609. https://doi.org/10.11626/KJEB.2018.36.4.601
  12. Hickey CW and MM Gibbs. 2009. Lake sediment phosphorus release management-decision support and risk assessment framework. New Zeal. J. Mar. Fresh. 43:819-856. https://doi.org/10.1080/00288330909510043
  13. Jewess PJ, J Higgins, KJ Berry, SR Moss, AB Boogaard and BPS Khambay. 2002. Herbicidal action of 2 -hydroxy-3-alkyl -1, 4-naphthoquinones. Pest Manag. Sci. 58:234-242. https://doi.org/10.1002/ps.428
  14. Joo JH, YH Kang, BS Park, CS Park, H Cho and MS Han. 2016. A field application feasibility assessment of naphthoquinone derivatives for the mitigation of freshwater diatom Stephanodiscus blooms. J. Appl. Phycol. 28:1735-1746. https://doi.org/10.1007/s10811-015-0686-2
  15. Joo JH, Z Kuang, P Wang, BS Park, SK Patidar and MS Han. 2017a. Ecological assessment of an algaecidal naphthoquinone derivate for the mitigation of Stephanodiscus within a mesocosm. Environ. Pollut. 229:735-745. https://doi.org/10.1016/j.envpol.2017.02.045
  16. Joo JH, P Wang, BS Park, JH Byun, HJ Choi, SH Kim and MS Han. 2017b. Improvement of cyanobacterial-killing biologically derived substances (BDSs) using an ecologically safe and cost-effective naphthoquinone derivative. Ecotox. Environ. Safe. 141:188-198. https://doi.org/10.1016/j.ecoenv.2017.02.006
  17. Kim HG. 2006. Mitigation and controls of HABs. pp. 327-338. In: Ecology of Harmful Algae. Springer, Berlin, Heidelberg.
  18. Koss AM and WE Snyder. 2005. Alternative prey disrupt biocontrol by a guild of generalist predators. Biol. Control. 32:243-251. https://doi.org/10.1016/j.biocontrol.2004.10.002
  19. Lee CS, CY Ahn, HJ La, S Lee and HM Oh. 2013. Technical and strategic approach for the control of cyanobacterial bloom in fresh waters. Korean J. Environ. Biol. 31:233-242. https://doi.org/10.11626/KJEB.2013.31.4.233
  20. Lee HW, BS Park, JH Joo, SK Patidar, HJ Choi, E Jin and MS Han. 2018. Cyanobacteria-specific algicidal mechanism of bioinspired naphthoquinone derivative, NQ 2-0. Sci. Rep. 8:11595. https://doi.org/10.1038/s41598-018-29976-5
  21. Lim BJ, SH Kim and SO Jun. 2002. Application of various plants as an inhibitor of algal growth: studies in barge enclosure and artificially eutrophicated pond. Korean J. Limnol. 35:123-132.
  22. Lin LC, LL Yang and CJ Chou. 2003. Cytotoxic naphthoquinones and plumbagic acid glucosides from Plumbago zeylanica. Phytochemistry 62:619-622. https://doi.org/10.1016/S0031-9422(02)00519-8
  23. Lurling M and FV Oosterhout. 2013. Case study on the efficacy of a lanthanum-enriched clay (Phoslock$^{(R)}$) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands). Hydrobiologia 710:253-263. https://doi.org/10.1007/s10750-012-1141-x
  24. Margalef R. 1958. Information theory in ecology. Gen. Syst. 3:36-71.
  25. Monks TJ, RP Hanzlik, GM Cohen, D Ross and DG Graham. 1992. Quinone chemistry and toxicity. Toxicol. Appl. Pharm. 112:2-16. https://doi.org/10.1016/0041-008X(92)90273-U
  26. O'Brien PJ. 1991. Molecular mechanisms of quinone cytotoxicity. Chem-Biol. Interact. 80:1-41. https://doi.org/10.1016/0009-2797(91)90029-7
  27. Oettmeier W, C Dierig and K Graham. 1986. QSAR of 1, 4-naphthoquinones as inhibitors of photosystem II electron transport. Quant. Struct. Act. Relat. 5:50-54. https://doi.org/10.1002/qsar.19860050203
  28. Patterson DJ. 2003. Free-Living Freshwater Protozoa. ASM Press, Washington, D.C.
  29. Park HJ, SH Kim, WS Park, JY Lee and JA Lee. 2014. The removal efficiency of Microcystis spp. and its ecotoxicity using clay. J. Korean Soc. Water Environ. 30:261-268. https://doi.org/10.15681/KSWE.2014.30.3.261
  30. Pielou EC. 1969. Shannon's formula as a measure of specific diversity: its use and misuse. Am. Nat. 100:463-465. https://doi.org/10.1086/282439
  31. Round FE, RM Crawford and DG Mann. 1990. The Diatom Biology and Morphology of Genera. Cambridge University Press, Cambridge.
  32. Ryoo KS and JH Choi. 2012. A comparative study on adsorption characteristics of total nitrogen and phosphorous in water using various adsorbents. J. Korean Chem. Soc. 56:700-705. https://doi.org/10.5012/jkcs.2012.56.6.700
  33. Schrader KK, ND Nanayakkara, CS Tucker, AM Rimando, M Ganzera and BT Schaneberg. 2003. Novel derivate s of 9, 10-anthraquinone are selective algicides against the mustyodor cyanobacterium Oscillatoria perornata. Appl. Environ. Microbiol. 69:5319-5327. https://doi.org/10.1128/AEM.69.9.5319-5327.2003
  34. Sengco MR and DM Anderson. 2004. Controlling harmful algal blooms through clay flocculation 1. J. Eukaryot. Microbiol. 51:169-172. https://doi.org/10.1111/j.1550-7408.2004.tb00541.x
  35. Senhorst HAJ and JJ Zwolsman. 2005. Climate change and effects on water quality: a first impression. Water Sci. Technol. 51:53-59. https://doi.org/10.2166/wst.2005.0107
  36. Shao J, R Li, JE Lepo and JD Gu. 2013. Potential for control of harmful cyanobacterial blooms using biologically derived substances: Problems and prospects. J. Environ. Manage. 125:149-155. https://doi.org/10.1016/j.jenvman.2013.04.001
  37. Shukla S, CP Wu, K Nandigama and SV Ambudkar. 2007. The naphthoquinones, vitamin K3 and its structural analogue plumbagin, are substrates of the multidrug resistance-linked ATP binding cassette drug transporter ABCG2. Mol. Cancer Ther. 6:3279-3286. https://doi.org/10.1158/1535-7163.MCT-07-0564
  38. Sigee DC, R Glenn, MJ Andrews, EG Bellinger, RD Butler, HAS Epton and RD Hendry. 1999. Biological control of cyanobacteria: principles and possibilities. pp. 161-172. In: The Ecological Bases for Lake and Reservoir Management. Springer, Dordrecht, Netherlands.
  39. Thackeray SJ, ID Jones and SC Maberly. 2008. Long-term change in the phenology of spring phytoplankton: species-specific responses to nutrient enrichment and climatic change. J. Ecol. 96:523-535. https://doi.org/10.1111/j.1365-2745.2008.01355.x
  40. Yamamoto M, H Murai, A Takeda, S Okunishi and S Morisaki. 2005. Bacterial flora of the biofilm Formed on the submerged surface of the reed Phragmites australis. Microbes Environ. 20:14-24. https://doi.org/10.1264/jsme2.20.14