References
- M. Z. Reformat & R. R. Yager. (2015), Soft computing techniques for querying XBRL data, Intelligent Systems in Accounting Finance & Management, 22(3), 179-199. https://doi.org/10.1002/isaf.1366
- B. L. Koveos & M. Liu (2016), Applying an ontology-argumenting XBRL Model to accounting information system for business integration, Asia-Pacific Journal of Accounting and Economics, 1(1), 1-23.
- D. Kaya & P. Pronobis (2016), The benefits of structured data across the information supply chain: Initial evidence on XBRL adoption and loan contracting of rpivate firm, Journal of Accounting and Public Policy, 35(4), 417-436. https://doi.org/10.1016/j.jaccpubpol.2016.04.003
- I. G. Main, S. Colombo & M. C. Forde (2005), Predicting the ultimate beding capacity of concrete beams from the relaxation ratio analysis of AE signals, Construction & Building Materials, 19(10), 746-754. https://doi.org/10.1016/j.conbuildmat.2005.06.004
- J. Richards, J, Amann, B. Arana., et. al. (2007), No Depletion of Wolbachia from On Chocerca volvulus after a short Course of RiFampin and/or Azithromycin, American Journal of Tropical Medicine & Hygiene, 77(5), 878-882. https://doi.org/10.4269/ajtmh.2007.77.878
- B. Ronald, C. Wood, P. Srivastava, et. al. (2008), Financing accounting information and corporate governance, Lancet, 372(9633), 145-154 https://doi.org/10.1016/S0140-6736(08)60697-2
- G. S. Plumlee, S. Morman & D. B. Smith (2009), Application of in vitro extraction studies to evaluate element bioaccessibility in soils from a transect across the United States and Canada, Applied Geochemistry, 24(8), 1454-1463. https://doi.org/10.1016/j.apgeochem.2009.04.015
- D. Chong, H. Shi, L. Fu, et. al. (2017), The Impact of XBRLoninformation asymmetry: evidence from loan contracting, Journal of Management Analytics, 4(2), 145-158. https://doi.org/10.1080/23270012.2017.1299047
- Y. S. Jeong, D. B. Yoon & S. S. Shin. (2019), An IoT Information Security Model for Securing Bigdata Information for IoT Users, Journal of Convergence for Information Technology, 9(11), 8-14. DOI : 10.22156/CS4SMB.2019.9.11.008
- H. T. Kim & S. H. Kim. (2019), Data mining based army repair parts demand forecast, Journal of the Korean data & Information Science Society, 30(2), 429-444. DOI : 10.7465/jkdi.2019.30.2.429
- J. B. Kim, J. W. Kim & J. H. Lim. (2019), Does XBRL Adoption Constrain Earning Management? Early Evidence from Mandated U.S Filers, Contemporary Accounting Research, 36(4).127-153. DOI : 10.1111/1911-3846.12493
- Y. Cong, H. Du & M. A. Vasarhelyi (2018), Are XBRL Files Being Accessed? Evidence from the SEC EDGAR Log File Dataset, Journal of Inforamtion Systems, 32(3), 181-207. DOI : 10.2308/isys-51885
- R. Chychyla & A. Kogan (2015), Using XBRL t oconduct a large scale study of the discreoancies between the accounting numbers in Compustat and SEC XBRL 10 filing, Journal of Information Systems, 29(1), 37-72. DOI : 10.2308/isys-5092210.2308/isys-50922
- M. Drake, D. Roulstone & J. Thornock. (2015), The determinants and consequenced of information acquisition via EDGAR, Contemporary Accounting Research, 32(3), 1128-1161. DOI : 10.1111/1911-3846.1211910.1111/1911-3846.12119
- A. Perdana, A. Robb & F. Rohde. 2015), An integrative review and synthesis of XBRL research in academic journals, Journal of Information Systems, 29(1), 115-152. DOI : 10.2308/isys-5088410.2308/isys-50884