Acknowledgement
The author would like to thank the referee for careful reading and valuable suggestions to improve the presentation of this paper. The author also would like to thank Professor Harmanci for his contributions and inspiring comments. This paper would not have been possible without his support.
References
- L. Bican, R. El Bashir, and E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33 (2001), no. 4, 385-390. https://doi.org/10.1017/S0024609301008104
- E. E. Bray, K. A. Byrd, and R. L. Bernhardt, The injective envelope of the upper triangular matrix ring, Amer. Math. Monthly 78 (1971), 883-886. https://doi.org/10.2307/2316486
- N. Ding, On envelopes with the unique mapping property, Comm. Algebra 24 (1996), no. 4, 1459-1470. https://doi.org/10.1080/00927879608825646
- P. C. Eklof and S. Shelah, On Whitehead modules, J. Algebra 142 (1991), no. 2, 492-510. https://doi.org/10.1016/0021-8693(91)90321-X
- E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189-209. https://doi.org/10.1007/BF02760849
- E. E. Enochs, Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc. 92 (1984), no. 2, 179-184. https://doi.org/10.2307/2045180
- E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Expositions in Mathematics, 30, Walter de Gruyter & Co., Berlin, 2000. https://doi.org/10.1515/9783110803662
- D. K. Harrison, Infinite abelian groups and homological methods, Ann. of Math. (2) 69 (1959), 366-391. https://doi.org/10.2307/1970188
- H. Holm and P. Jrgensen, Covers, precovers, and purity, Illinois J. Math. 52 (2008), no. 2, 691-703. http://projecteuclid.org/euclid.ijm/1248355359
- J. Lambek, A module is flat if and only if its character module is injective, Canad. Math. Bull. 7 (1964), 237-243. https://doi.org/10.4153/CMB-1964-021-9
- J. J. Rotman, An Introduction to Homological Algebra, second edition, Universitext, Springer, New York, 2009. https://doi.org/10.1007/b98977
- L. H. Rowen, Ring Theory. Vol. I, Pure and Applied Mathematics, 127, Academic Press, Inc., Boston, MA, 1988.
- J. Trlifaj, Covers, Envelopes, and Cotorsion Theories, Lecture notes for the workshop "Homological Methods in Module Theory", Cortona, September 10-16, 2000.
- J. Trlifaj, Infinite Dimensional Tilting Theory and its Applications, Lecture notes for a series of talks at the Nanjing University, June-July 2006.
- J. Xu, Flat Covers of Modules, Lecture Notes in Mathematics, 1634, Springer-Verlag, Berlin, 1996. https://doi.org/10.1007/BFb0094173
- H. Yan, Matlis injective modules, Bull. Korean Math. Soc. 50 (2013), no. 2, 459-467. https://doi.org/10.4134/BKMS.2013.50.2.459