DOI QR코드

DOI QR Code

Quality Comparison of Activated Carbon Produced From Oil Palm Fronds by Chemical Activation Using Sodium Carbonate versus Sodium Chloride

  • MAULINA, Seri (Department of Chemical Engineering, Universitas Sumatera Utara) ;
  • HANDIKA, Gewa (Department of Chemical Engineering, Universitas Sumatera Utara) ;
  • Irvan, Irvan (Department of Chemical Engineering, Universitas Sumatera Utara) ;
  • ISWANTO, Apri Heri (Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara)
  • Received : 2020.04.21
  • Accepted : 2020.06.03
  • Published : 2020.07.25

Abstract

Using Na2CO3 versus NaCl as chemical activator, we compared the quality of activated carbon produced from oil palm fronds as raw material. These activators were selected for comparison because both are readily available and are environmentally friendly. In the manufacturing, we used Indonesian National Standard (SNI 06-3730-1995) parameters. For the quality comparison, we determined activated-carbon yield, moisture, ash, volatiles, and fixed-carbon contents; and adsorption capacity of iodine. The best characteristics, assessed by morphological surface analysis and Fourier transform infrared (FTIR) spectral analysis, were observed in the carbon activated by Na2CO3 at an activator concentration of 10% and carbonization temperature of 400 ℃. The results were as follows: activated-carbon yield, 84%; water content, 8.80%; ash content, 2.20%; volatiles content, 14.80%; fixed-carbon content, 68.60%; and adsorption capacity of iodine, 888.51 mg/g. Identification using the FTIR spectrophotometer showed the presence of the functional groups O-H, C=O, C=C, C-C, and C-H in the Na2CO3-activated carbon.

Keywords

References

  1. Adinata, D., Daud, W.M.A.W., Aroua, M.K. 2005. Preparation and characterization of activated carbon from palm shell by chemical activation with $K_2CO_3$. Journal of Bioresource Technology 98(1): 145-149. https://doi.org/10.1016/j.biortech.2005.11.006
  2. Alhamed, Y.A., Rather, S.U., El-Shazly, A.H., Zaman, S.F., Daous, M.A., Al-Zahrani, A.A. 2015. Preparation of activated carbon from fly ash and its application for $CO_2$ capture. Korean Journal of Chemical Engineering 32(4): 723-730. https://doi.org/10.1007/s11814-014-0273-2
  3. Caroline, S., Adebayo, M.A., Lima, E.C., Cataluna, R., Thue, P.S., Prola, L.D.T., Puchana-Rosero, M.J., Machado, F.M., Pavan, F.A., Dotto, G.L. 2015. Microwave-assisted Activated Carbon from Cocoa Shell Adsorbent for Removal of Sodium Diclofenac and Nimesulide from Aqueous Effluents. Journal of Hazardous Materials 289: 18-27. https://doi.org/10.1016/j.jhazmat.2015.02.026
  4. Chen, Y., Huang, B., Huang, M., Cai, B. 2011. On the preparation and characterization of activated carbon from mangosteen shell. Journal of the Taiwan Institute of Chemical Engineers 42(5): 837-842. https://doi.org/10.1016/j.jtice.2011.01.007
  5. Deng, H., Li, G., Yang, H., Tang, J., Tang, J. 2010. Preparation of activated carbons from cotton stalk by microwave assisted KOH and $K_2CO_3$ Activation. Chemical Engineering Journal 163(3): 373-381. https://doi.org/10.1016/j.cej.2010.08.019
  6. Hamchara, P., Chanjula, P., Cherdthong A., Wanapat, M. 2018. Digestibility, ruminal, fermentation, and nitrogen balance with various feeding levels of oil palm fronds treated with lentinus sajor-caju in goats. Asian-Australasian Journal of Animal Sciences 31(10): 1619-1626. https://doi.org/10.5713/ajas.17.0926
  7. Hong, LS., Ibrahim, D., Omar, IC. 2012. Oil palm frond for the production of bioethanol. International Journal of Biochemistry and Biotechnology 1(1): 7-11.
  8. Irvan, Trisakti, B., Maulina S., Daimon, H. 2018. Production of biogas from palm oil mill effluent: from laboratory scale to pilot scale. Rasayan Journal of Chemistry 11(1): 378-385.
  9. Jin, X.J., Yu, Z.M., Wu, Y. 2012. Preparation of activated carbon from lignin obtained by straw pulping by KOH and $K_2CO_3$ chemical activation. Cellulose Chemistry and Technology 46(1-2): 79-85.
  10. Kamariya, S., Pandya, J., Charola, S. 2016. Preparation and characterization of activated carbon from agricultural waste, peanut shell by chemical activation. International Journal of Trend in Research and Development 3(3): 138-141.
  11. Marsh, H., Reinoso, F.R. 2006. Activated carbon. Elsevier Science and Technology Books. Netherlands, Holland.
  12. Maulina, S., Nurtahara, Fakhradila. 2018. Palm midrib pyrolysis to produce phenol in liquid smoke. Jurnal Teknik Kimia USU 7(2): 12-16. https://doi.org/10.32734/jtk.v7i2.1641
  13. Maulina, S., Anwari, F.N. 2019. Comparing characteristic of charcoal and activated carbon from oil palm fronds. IOP Conf. Series: Earth and Environmental Science 305: 012059. https://doi.org/10.1088/1755-1315/305/1/012059
  14. Mitome, T., Uchida, Y., Egashira, Y., Hayashi, K., Nishiura, A., Nishiyama, N. 2013. Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe (III) adsorption from aqueous solution. Journal of Colloids and Surfaces A: Physicochemical and Engineering Aspects 424(1): 89-95.
  15. Pambayun, G.S., Yulianto, R.Y.E., Rachimoellah, M., Putri, E.M.M. 2013. Pembuatan karbon aktif dari arang tempurung kelapa dengan aktivator $ZnCl_2$ dan $Na_2CO_3$ sebagai absorben untuk mengurangi kadar fenol dalam air limbah. Jurnal Teknik POMITS 2(1): 1-5.
  16. Prabuningrum, D.S., Massijaya, M.Y., Hadi, Y.S., Abdillah, I.B. 2020. Physical-mechanical properties of laminated board made from oil palm trunk (Elaeis guineensis Jacq.) waste with various lamina compositions and densifications. Journal of the Korean Wood Science and Technology 48(2): 196-205. https://doi.org/10.5658/WOOD.2020.48.2.196
  17. Rahman, N., Valery, G., Njoya, D., Wahabou, A., Bacaoui, A., Yaacoubi, A. 2018. Development of porosity of low cost activated carbon from postconsumer plastics and lignocellulosic waste materials using physico-chemical activation. Global Journal of Science Frontier Research 18(2): 21-29.
  18. Ramdja, A.F., Halim, M., Handi, J. 2008. Pembuatan karbon aktif dari pelepah kelapa (Cocus nucifera). Jurnal Teknik Kimia 15(2): 1-8.
  19. Rodenas, M.A., Amoros, D.C., Solano, A.L. 2003. Characterization of activated carbon fibers by $CO_2$ adsorption. Carbon 41(2): 267-275. https://doi.org/10.1016/S0008-6223(02)00279-8
  20. Saka, C. 2012. BET, TG-DTG, FT-IR, SEM, Iodine number analysis and preparation of activated carbon from acorn sheel by chemical activation with $ZnCl_2$. Journal of Analytical and Applied Pyrolysis 95: 21-24. https://doi.org/10.1016/j.jaap.2011.12.020
  21. Sombatsompop, N., Thongsang, S., Markpin, T., Wimolmala, E. 2004. Fly ash particles and precipitated silica as fillers in rubbers. I. Untreated fillers in natural rubber and styrene-butadiene rubber compounds. Journal of Applied Polymer Science 93(5): 2119-2130. https://doi.org/10.1002/app.20693
  22. Son, S.J., Choi, J.S., Choo, K.Y., Song, S.D., Vijayalakshmi, S., Kim, T.H. 2005. Development of carbon dioxide adsorbents using carbon materials prepared from coconut shell. Korean Journal of Chemical Engineering 22(2): 291-297. https://doi.org/10.1007/BF02701500
  23. Tan, I.A.W., Ahmad, A.L., Hameed, B.H. 2008. Preparation of activated carbon from coconut husk: optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. Journal of Hazardous Material 153(1): 709-717. https://doi.org/10.1016/j.jhazmat.2007.09.014
  24. Tani, D., Setiaji, B., Trisunaryanti, W., Syoufian, A. 2014. Effect of activation time on chemical structure and quality of coconut shell avtivated carbon. Asian Journal Science Technology 5(9): 553-556
  25. Tsoumis, G. 1991. Science and technology of wood: structure, properties, utilization. Van Nostrand Reinhold. New York, USA.