DOI QR코드

DOI QR Code

Flame Retardancy of Wood Products by Spreading Concentration and Impregnation Time of Flame Retardant

방염제의 도포량과 침지시간 차이에 따른 목재제품의 방염성능

  • PARK, Sohyun (Division of Wood Utilization, Department of forest Products, National Institute of Forest Science) ;
  • HAN, Yeonjung (Division of Wood Utilization, Department of forest Products, National Institute of Forest Science) ;
  • SON, Dong Won (Division of Wood Utilization, Department of forest Products, National Institute of Forest Science)
  • Received : 2020.02.21
  • Accepted : 2020.05.04
  • Published : 2020.07.25

Abstract

The flame retardancy, such as carbonized length and area, of four plank type wood products by the spreading concentration and impregnation time of flame retardant were measured according to standard of the Nation Fire Agency in Republic of Korea. To measure the flame retardancy, Korean pine plywood, Japanese larch plywood, Japanese cypress planks, and perforated birch plywood boards were treated with self-development flame retardant by 300 and 500 g/㎡ spreading concentration and those were compared with control specimen. In general, the flame retardant performance of wood products improved as the spreading concentration of flame retardant increased. Except for Japanese larch plywood, there was no significant difference in the flame retardant performance by the spreading concentration. The flame retardant performance of perforated birch plywood board was positively correlated up to 60 minutes of impregnation time, but then gradually decreased. These results about the flame retardancy of wood products by spreading concentration and impregnation time were expected to be basic data for improving flame-retardant treated wood.

4종의 판상형 목재제품의 방염제 도포량과 침지시간에 따른 방염성능을 분석하기 위하여 소방청의 방염성능기준에 따라 목재제품의 탄화길이와 탄화면적을 측정하였다. 잣나무 합판, 낙엽송 합판, 편백 판재, 타공처리된 자작나무 합판에 자체 개발된 방염제를 각각 300, 500 g/㎡씩 도포하고 방염처리되지 않은 시험편과 비교하였다. 일반적으로 방염제의 도포량이 증가함에 따라 탄화길이와 탄화면적이 감소하여 방염성능이 증가하는 경향을 나타냈으나, 낙엽송 합판을 제외하고 탄화길이와 탄화면적의 감소량이 크지 않았다. 타공처리된 자작나무 합판의 침지시간에 따른 방염성능은 60분의 침지시간까지 양의 상관관계를 나타냈으나, 그 이후 점차 완만해지는 경향을 보였다. 방염제의 도포량과 침지시간에 따른 목재제품의 방염성능은 추후 방염성능 기준에 맞는 불연·준불연 목재의 생산을 위한 기초자료로 이용될 것으로 기대된다.

Keywords

References

  1. Cha, J.M., Hyun, S.H., Kim, I.B., Yoon, M.O. 2011. A study on the flame retardant performance of mdf wood according to flame retardant treatment method. Journal of Korean Institute of Fire Science and Engineering 25(6): 146-155.
  2. Choi, J.M., Ro, H.S., Jin, Y.H. 2011. A study on combustion characteristics of flame retardant treated Pinus Densiflora. Journal of Korean Institute of Fire Science 25(3): 244-251.
  3. Dobele, G., Urbanovich, I., Zhurins, A., Kampars, V., Meier, D. 2007. Application of analytical pyrolysis for wood fire protection control. Journal of Analytical and Applied Pyrolysis 79(1-2): 47-51. https://doi.org/10.1016/j.jaap.2006.10.019
  4. He, X., Li, X.J., Zhong, Z., Mou, Q., Yan, Y., Chen, H., Liu, L. 2016. Effectiveness of impregnation of ammonium polyphosphate fire retardant in poplar wood using microwave heating. Fire and materials 40(6): 818-825. https://doi.org/10.1002/fam.2344
  5. Ho, C.S., Seong, H.G. 2004. Thermal degradation of wood treated with guanidine compounds in air flammability study. Journal of Thermal Analysis and Calorimetry 75: 221-232. https://doi.org/10.1023/B:JTAN.0000017344.01189.e5
  6. Kim, C.G., Park, C.W., Yoon, T.H., Lim, N.G. 2013. Characteristics of flame retardant and mothproof conversation of Microwave heated wood. Journal of the Korean Wood Science and Technology 41(3): 234-246. https://doi.org/10.5658/WOOD.2013.41.3.234
  7. Kim, D.W., Kim, C.W., Han, S.H., Chung, Y.J., Han, G.S. 2014. Flame retardant treatment’s effects and detection method on wooden buildings’ pigment layer (Dan-cheong). Journal of the Korean Wood Science and Technology 42(4): 393-406. https://doi.org/10.5658/WOOD.2014.42.4.393
  8. Kim, H.W., Jung G.S., Jung R.H., Lee, B.K. 2012. Development of fire proof clothes for the multiplex available premises fire. Journal of Korea Society and Harzard Mitigation. 12(3): 211-215. https://doi.org/10.9798/KOSHAM.2012.12.3.211
  9. Kim, I,B., Hyun, S.H. 2009. A study on the flame retardant performance and toxicity of the painting wood painted with flame retardant solution. Journal of Korean Institute of Fire Science 23(5): 66-71.
  10. Lim, B.A., Kim, J.C., Kim, S.Y., Son, Y.S., Kim, K.H., Sun, Y.Y., Kang, Y.S. 2007. Variations of VOC emission rates from indoor wallboard with elapsed time. Proceeding of the 45th Meeting of Korean Society for Atmospheric Environment.
  11. Lim, N.G., Her, J.W., Park, C.W. 2008. An experimental study on flame resistant performance by flame resistant method and agents. Journal of Korean Institute of Building Construction 8(6): 117-122. https://doi.org/10.5345/JKIC.2008.8.6.117
  12. Min, S.H., Sun, J.S., Kim, S.C., Choi, Y.M., Lee, S.K. 2012 A study on fire performance evaluation of EIFS on anti-flaming finish by cone calorimeter test. Journal of Korean Institute of Fire Science 26(3): 106-111.
  13. Park, H.J., Wen, M., Cheon, S.H., Hwang, J.W., Oh, S.W. 2012. Flame retardnat performance of wood treated with flame retardant chemicals. Journal of the Korean Wood Science and Technology 40(5): 311-318. https://doi.org/10.5658/WOOD.2012.40.5.311
  14. Park, J.E., Yoon, S.M., Choi, Y.S., Hwang, W.J., Son, D.W. 2018. Performance evaluation of domestic flame retardant perforated plate, JunJu, Republic of Korea, Proc. of 2018 the Korean society of wood science and technology annual meeting, April, 1: 68-68.
  15. Park, S., Han, Y., Son, D.W. 2019. Analysis of combustion characteristics of five domestic species. Journal of the Korea Furniture Society 30(4): 303-311.
  16. Park. C.W., Her, J.W., Lim, N.G. 2011. The liquid flame proofing agent's permeating effect of wood using microwave. Journal of the Korea Institute of Building Construction 11(3): 256-264. https://doi.org/10.5345/JKIC.2011.06.3.256
  17. Seo, H.J., Kang, M.R., Park, J.E., Son, D.W. 2016. Combustion characteristics of useful imported woods. Journal of the Korean Wood Science and Technology 44(1): 19-29. https://doi.org/10.5658/WOOD.2016.44.1.19
  18. Seo, H.J., Kang, M.R., Son, D.W. 2015. Combustion properties of woods for indoor use (II). Journal of the Korean Wood Science and Technology 43(4): 478-485. https://doi.org/10.5658/WOOD.2015.43.4.478
  19. Seo, H.J., Kim, N.K., Jo, J.M., Lee, M.C. 2017. Analysis on the Flame-Retardant Performance and Hazards in Gas Products for Water-Soluble Flame-Retardant- Chemicals Treated Woods. Journal of Korea Society and Harzard Mitigation 17(4): 173-179.
  20. Son, D.W., Han, G.S. 2014. Evlauation methods of flame retarants for wooden cultural properties. Journal of the Korean Wood Science and Technology 42(5): 590-596. https://doi.org/10.5658/WOOD.2014.42.5.590
  21. Son, Y.S. 1988. Trace back on the past of flame retardant treatment and countermeasure in the Korea. Journal of Chemistry of Fire Prevention 2(2): 31-41.
  22. Song, Y.J., Jung, H.J., Lee, I.H., Hong, S.I. 2015. Performance evaluation of bending strength of curved composite glulams made of Korean white pine. Journal of the Korean Wood Science and Technology 43(4): 463-469. https://doi.org/10.5658/WOOD.2015.43.4.463
  23. Song, Y.S. 2011. A study on the furniture design applied with the characteristic of mother-of-pearl and Birch plywood. Journal of the Korea Furniture Society 22(4): 245-251.
  24. White, R.H. 2000. Charring rate of composite timber products. The proceedings of Wood and Fire Safety 2000, Part 1, 4th International Scientific Conference, May, pp. 14-19.