References
- Abid, F.F. and Najim, M. (2001), "A fast feedforward training algorithm using a modified form of the standard backpropagation algorithm", IEEE Trans. Neural Networks, 12, 424-430. https://doi.org/10.1109/72.914537
- Allen, M. and Maute, K. (2004), "Reliability-Based Design Optimization of Aeroelastic Structures", Struct. Multidisciplinary Optimization, 27(4), 228-242. https://doi.org/10.1007/s00158-004-0384-1.
- Alpaydin, E. (2004), Introduction to Machine Learning, MIT Press, Cambridge, USA.
- Kurtoglu, A.E. (2018), "Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines", Steel Compos. Struct., 29(3).
- Cristianini, N. and Shawe-Taylor, J. (2000), An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press.
- Dowell, E. and Tang, D. (2002), "Nonlinear aero elasticity and unsteady aerodynamics", AIAA J., 40(9), 1697-1707. https://doi.org/10.2514/2.1853.
- Finlay, D.D., Nugent, C.D., McCullagh, P.J., Black, N.D. and Lopez, J.A. (2003), "Evaluation of a statistical prediction model used in the design of neural network based ECG classifiers: A multiple linear regression approach", 258-26.
- Garabedian, P.R. and Korn, D.G. (1971), "Numerical design of transonic airfoils", Numerical Solution of Differential Equations - II, Academic Press, Elsevier, Germany.
- Genbrugged, D. and Eeckhout, L. (2007), "Statistical simulation of chip multiprocessors running multi-program workloads", Proceedings of 25th International Conference on Computer Design, IEEE, 464-471.
- Han, F., Ling, Q.H. and D.S. Huang (2008), "Modified constrained learning algorithms incorporating additional functional constraints into neural networks", Information Sci., 178, 907-919. https://doi.org/10.1016/j.ins.2007.09.008
- Hertz, J., Krogh, A. and Palmer, R.G., (1991), Introduction to the Theory of Neural Computation, Addison-Wesley Publishing Co., California, USA.
- Jeong, S.Y. and Lee, S.Y. (2000), "Adaptive learning algorithms to incorporate additional functional constraints into neural networks", Neuro Comput., 35,73-90.
- Fan, J. (2014), "Accelerating the modified Levenberg-Marquardt method for nonlinear equations", Math. Comp., 1173-1187.
- Kousen, K. and Bendiksen, O. (1994), "Limit cycle phenomena in computational transonic aeroelasticity," J. Aircraft, 31(6), 1257-1263. https://doi.org/10.2514/3.46644.
- Lee, B., Jiang, L. and Wong, Y. (1998), "Flutter of an Airfoil with Cubic Restoring Force, Journal of Fluids and Structures", 13(1), 75-101. https://doi.org/10.1006/jfls.1998.0190.
- Maute, K., Nikbay, M. and Farhat, C. (2003), "Sensitivity analysis and design optimization of three-dimensional nonlinear aeroelastic systems by the adjoint method", J. Numerical Methods Eng., 56(6), 911-933. https://doi.org/10.1002/nme.599
- Patternson, D.W. (1996), Artificial Neural Network: Theory and Applications, Prentice-Hall, Englewood Cliffs, NJ, USA.
- Pettit, C. (2004), "Uncertainty quantification in aeroelasticity-Recent results and research challenges", J. Aircraft, 41(5), 1217-1229. https://doi.org/10.2514/1.3961.
- Pires, J.C.M., Martins, F.G., Sousa, S.I.V. and Alvim, M.C.M. (2008), "Pereira M.C. Selection and validation of parameters in multiple linear and principal component regressions", Environ. Modelling Software, 23(1), 50-55. https://doi.org/10.1016/j.envsoft.2007.04.012.
- Saltan, M. and Terzi, S. (2008), "Modeling deflection basin using artificial neural networks with cross-validation technique in backcalculating flexible pavement layer moduli", Adv. Eng. Software, 39(7), 588-592, https://doi.org/10.1016/j.advengsoft.2007.06.002.
- Sejnowski, T. and Rosenberg, C. (1987), "Parallel networks that learn to pronounce English text", Complex Syst., 1, 143-168.
- Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463.
- Zayid, E.I.M. and Akay, M.F. (2012), "Predicting the performance measures of a message-passing multiprocessor architecture using artificial neural networks", Neural Comput. Appl., 23(7-8), 2481-2491. https://doi.or/10.1007/s00521-012-1267-9.