DOI QR코드

DOI QR Code

Time-dependent analysis of slender, tapered reinforced concrete columns

  • Received : 2020.01.22
  • Accepted : 2020.06.30
  • Published : 2020.07.25

Abstract

This study analyzed stresses in concrete and its reinforcement, computing the additional loading transferred by concrete creep. The loading varied from zero, structure exclusively under its self-weight, up to the critical buckling load. The studied structure was a real, tapered, reinforced concrete pole. As concrete is a composite material, homogenizing techniques were used in the calculations. Due to the static indetermination for determining the normal forces acting on concrete and reinforcement, equations that considered the balance of forces and compatibility of displacement on cross-sections were employed. In the mathematical solution used to define the critical buckling load, all the elements of the structural dynamics present in the system were considered, including the column self-weight. The structural imperfections were linearized using the geometric stiffness, the proprieties of the concrete were considered according to the guidelines of the American Concrete Institute (ACI 209R), and the ground was modeled as a set of distributed springs along the foundation length. Critical buckling loads were computed at different time intervals after the structure was loaded. Finite element method results were also obtained for comparison. For an interval of 5000 days, the modulus of elasticity and critical buckling load reduced by 36% and 27%, respectively, compared to an interval of zero days. During this time interval, stress on the reinforcement steel reached within 5% of the steel yield strength. The computed strains in that interval stayed below the normative limit.

Keywords

Acknowledgement

The author thanks RM Engineering Solutions for providing the data for the application case.

References

  1. Abderezak, R., Daouadji, T.H., Abbes, B., Rabia, B., Belkacem, A. and Abbes, F. (2017), "Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage", Adv. Concr. Constr., 6(3), 257-278. https://doi.org/10.12989/amr.2017.6.3.257
  2. Afefy, H.M. and El-Tony, El-T.M. (2016), "Simplified design procedure for reinforced concrete columns based on equivalent column concept", Int. J. Concr. Struct. Mater., 10(393). https://doi.org/10.1007/s40069-016-0132-0
  3. American Concrete Institute ACI (2008), Prediction of creep, shrinkage, and temperature effects in concrete structures. ACI-209R-08, ACI Committee 209.
  4. Awrejcewicz, J., Krysko, A.V., Zagniboroda N.A., Dobriyan, V.V. and Krysko, V.A. (2015), "On the general theory of chaotic dynamics of flexible curvilinear Euler-Bernoulli beams", Nonlinear Dynam., 79(1), 11-29. https://doi.org/10.1007/s11071-014-1641-5.
  5. Awrejcewicz, J., Krysko, V.A., Pavlov, S.P., Zhigalov, M.V., Kalutsky, L.A. and Krysko, A.V. (2019), "Thermoelastic vibrations of a Timoshenko microbeam based on the modified couple stress theory", Nonlinear Dynam., 99(2). https://doi.org/10.1007/s11071-019-04976-w.
  6. Banerjee, J.R. and Ananthapuvirajah, A. (2019), "An exact dynamic stiffness matrix for a beam incorporating Rayleigh-Love and Timoshenko theories", Int. J. Mech. Sci., 150(2019), 337-347. https://doi.org/10.1016/j.ijmecsci.2018.10.012.
  7. Bathe, K.J. and Wilson, E.L. (1973), "Solution methods for eigenvalue problems in structural mechanics", Int. J. Numer. Methods Eng., https://doi.org/10.1002/nme.1620060207.
  8. Bazant, Z.P. (1972), "Prediction of concrete creep effects using age-adjusted effective modulus method", ACI Struct. J., 69(4), 212-219. DOI:10.14359/11265.
  9. Bert, C.W. (1984), "Improved technique for estimating buckling loads", J. Eng. Mech. - ASCE, 110(12), https://doi.org/10.1061/(ASCE)0733-9399(1984)110:12(1655)
  10. Bert, CW. (1987), "Application of a version of the Rayleigh technique to problems of bars, beams, columns, membranes, and plates", J Sound Vib., 119(2), DOI:10.1016/0022-460X(87)90457-3
  11. B-Jahromi, A., Rotimi, A., Tovi, S., Goodchild, C. and Rizzuto, J. (2019), "Evaluation of the influence of creep and shrinkage determinants on column shortening in mid-rise buildings", Adv. Concr. Constr., 5(2), 155-171. https://doi.org/10.12989/acc.2017.5.2.155.
  12. Bradford, M.A. and Gilbert, R.I. (1992), "Analysis of circular RC columns for short- and long-term deformations", J. Struct. Eng. - ASCE, 118(3). https://doi.org/10.1061/(ASCE)0733-9445(1992)118:3(669).
  13. Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007), "An analytical-numerical procedure for cracking and time-dependent effects in continuous composite beams under service load", Steel Compos. Struct., 7(3), 219-240. http://dx.doi.org/10.12989/scs.2007.7.3.219.
  14. Clough, R.W. and Penzien, J. (1993), "Dynamics of Structures", McGraw-Hill International Editions, 2nd Edition, Taiwan.
  15. Dezi, L., Gara, F. and Leoni, G. (2006), "Construction sequence modeling of continuous steel-concrete composite bridge decks", Steel Compos Struct., 6(2), 123-138. http://dx.doi.org/10.12989/scs.2006.6.2.123.
  16. Euler L. (1744), "De Curvis Elasticis, Additamentum I to his Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes", Lausanne and Geneva.
  17. Fragiacomo, M., Amadio, C. and Macorini, L. (2002), "Influence of viscous phenomena on steel-concrete composite beams with normal or high-performance slab", Steel Compos. Struct., 2(2), 85-98. http://dx.doi.org/10.12989/scs.2002.2.2.085.
  18. Greenhill, A.G. (1881), "Determination of the greatest height consistent with stability that a vertical pole or mast can be made, and the greatest height to which a tree of given proportions can grow", Proceedings of the Cambridge Philosophical Society, 4, 65-73, London.
  19. Jung, S.Y., Kim, N.I. and Shin, D.K. (2007), "Viscoelastic behavior on composite beam using nonlinear creep model", Steel Compos. Struct., 7(5), 355-376. http://dx.doi.org/10.12989/scs.2007.7.5.355.
  20. Johnston, B.G. (1983), "Column buckling theory: Historic highlights", J. Struct. Eng ASCE., 109(9). https://doi.org/10.1061/(ASCE)0733-9445(1983)109:9(2086)
  21. Karimi, K.; Tait, M.J.; El-Dakhakhni, W. W. (2013), "Analytical modeling and axial load design of a novel FRP-encased steel-concrete composite column for various slenderness ratios", Eng. Struct., 46(2013), 526-534. http://dx.doi.org/10.1016/j.engstruct.2012.08.016.
  22. Kataoka L.T. and Bittencourt, T.N. (2014), "Numerical and experimental analysis of time-dependent load transfer in reinforced concrete columns", Rev. IBRACON Estrut. Mater.. 7(5), http://dx.doi.org/10.1590/S1983-41952014000500003.
  23. Kawano, A. and Warner, R.F. (1996), "Model formulations for numerical creep calculations for concrete", J. Struct. Eng. ASCE, 122(3). https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(284).
  24. Kumar, P. and Pratiher, B. (2019), "Modal analysis and dynamic responses of a rotating Cartesian manipulator with generic payload and asymmetric load", Mech. Based Des. Struct., 48(7), https://doi.org/10.1080/15397734.2019.1624174.
  25. Leissa, A.W. (2005), "The historical bases of the Rayleigh and Ritz methods", J. Sound Vib., 287(4-5). https://doi.org/10.1016/j.jsv.2004.12.021.
  26. Li, J., Huo, Q., Li, X., Kong, X. and Wu, W. (2014), "Dynamic stiffness analysis of steel-concrete composite beams", Steel Compos Struct., 16(6), 577-593. http://dx.doi.org/10.12989/scs.2014.16.6.577.
  27. Lord Rayleigh (1877), Theory of Sound, New York: Dover Publications, re-issued.
  28. Lubbers, L.A., van Hecke, M. and Coulais, C. (2017), "A nonlinear beam model to describe the post-buckling of wide neo-Hookean beams", J. Mech. Phys. Sol., 106(191-206). https://doi.org/10.1016/j.jmps.2017.06.001.
  29. Madureira, E.L., Siqueira, T.M. and Rodrigues, E.C. (2013), "Creep strains on reinforced concrete columns", Rev. IBRACON Estrut. Mater., 6(4). http://dx.doi.org/10.1590/S1983-41952013000400003.
  30. Marin, M.C. and El Debs, M.K. (2012), "Contribution to assessing the stiffness reduction of structural elements in the global stability analysis of precast concrete multi-story buildings". Rev. IBRACON Estrut. Mater., 5(3), 316-342. http://dx.doi.org/10.1590/S1983-41952012000300005
  31. Maru, S., Asfaw, M. and Nagpal, A.K. (2001), "Consistent Procedure for Creep and Shrinkage Effects in RC Frames", J Struct. Eng. - ASCE., 127(7). https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(726).
  32. Mehta, P.K., Monteiro, P.J.M. and Filho, A.C. (1994), "Concreto: estrutura, propriedades e materiais" (Concrete: Structure, properties and materials), Ed. PINI, Sao Paulo, Brasil, (In Portuguese).
  33. Mirmiran, A., Shahawy, M. aqnd Beitleman, T. (2001), "Slenderness limit for hybrid FRP-concrete columns", J. Compos. Constr., 5(1). https://doi.org/10.1061/(ASCE)1090-0268(2001)5:1(26).
  34. Murawski, K. (2017), "Technical stability of continuously loaded thin-walled slender columns", 1 Ed., Lulu Press, Inc., North Carolina.
  35. Samral, R.M. (1995), "New analysis for creep behavior in concrete columns", J. Struct. Eng. - ASCE., 121(3). https://doi.org/10.1061/(ASCE)0733-9445(1995)121:3(399).
  36. SAP2000 (2019), Analysis reference manual. Integrated software for structural analysis and design. Berkeley, California: Com-puters and Structures, Inc
  37. Sharma, R.K., Maru, S. and Nagpal, A.K. (2004), "Simplified procedure for creep and shrinkage effects in reinforced concrete frames", J. Struct. Eng. - ASCE., 130(10). https://doi.org/10.1061/(ASCE)07339445(2004)130:10(1545).
  38. Szyszkowski, W. and Glockner, P.G. (1985), "An incremental formulation of hereditary constitutive laws applied to uniaxial problems", Int. J. Mech. Sci., 27(9), 583-594. https://doi.org/10.1016/0020-7403(85)90074-8.
  39. Tamayo, J.L.P., Morsch, I.B. and Awruch, A.M. (2015), "Short-time numerical analysis of steel-concrete composite beams", J Braz. Soc. Mech. Sci. Eng., 37(1097). https://doi.org/10.1007/s40430-014-0237-9.
  40. Temple, G. and Bickley, W.G. (1933), "Rayleigh's Principle and Its Applications to Engineering", Oxford University Press, Humphrey Milford, London.
  41. Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability. 2nd Ed., New York: McGraw-Hill Book Company
  42. Uzny, S. (2011), "An elastically supported geometrically nonlinear slender system subjected to a specific load in respect of bifurcational load and free vibrations", Int. J. Bifurc. Chaos., 21(10), 2983-2992. https://doi.org/10.1142/S0218127411030295.
  43. Wahrhaftig, A.M., Brasil, R.M.L.R.F. and Balthazar, J.M. (2013), "The first frequency of cantilever bars with geometric effect: a mathematical and experimental evaluation". J. Braz. Soc. Mech. Sci. Eng., https://doi.org/10.1007/s40430-013-0043-9.
  44. Wahrhaftig, A.M. and Brasil, R.M.L.R.F. (2017), "Initial undamped resonant frequency of slender structures considering nonlinear geometric effects: The case of a 60.8 m-high mobile phone mast", J. Braz. Soc. Mech. Sci. Eng., 39(3), 725-735. https://doi.org/10.1007/s40430-016-0547-1.
  45. Wahrhaftig, A.M. (2019), "Analysis of the first modal shape using two case studies", Int. J. Comput. Meth., 16(6). https://doi.org/10.1142/S0219876218400194.
  46. Wahrhaftig, A.M., Silva, M.A. and Brasil, R.M.L.R.F. (2019), "Analytical determination of the vibration frequencies and buckling loads of slender reinforced concrete towers", Lat. Am. J. Solids Stru., 16(5). http://dx.doi.org/10.1590/1679-78255374.
  47. Wang, T., Bradford, M.A. and Gilbert, R.I. (2006), "Creep buckling of shallow parabolic concrete arches", J. Struct. Eng., 132(10), 1641-1649. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:10(1641).
  48. Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM", Steel Compos Struct., 17(5), 753-776. http://dx.doi.org/10.12989/scs.2014.17.5.753.
  49. Zhou, W., Li, Y., Shi, Z. and Lin, J. (2019), "An analytical solution for elastic buckling analysis of stiffened panel subjected to pure bending", Int. J. Mech. Sci., 161(162), https://doi.org/10.1016/j.ijmecsci.2019.105024.
  50. Zienkiewicz, O.C, Watson, M. and King, I.P. (1968), "A Numerical method of visco-elastic stress analysis", Int. J. Mech. Sci., 10(1), 807-827. https://doi.org/10.1016/0020-7403(68)90022-2.