Acknowledgement
The author thanks RM Engineering Solutions for providing the data for the application case.
References
- Abderezak, R., Daouadji, T.H., Abbes, B., Rabia, B., Belkacem, A. and Abbes, F. (2017), "Elastic analysis of interfacial stress concentrations in CFRP-RC hybrid beams: Effect of creep and shrinkage", Adv. Concr. Constr., 6(3), 257-278. https://doi.org/10.12989/amr.2017.6.3.257
- Afefy, H.M. and El-Tony, El-T.M. (2016), "Simplified design procedure for reinforced concrete columns based on equivalent column concept", Int. J. Concr. Struct. Mater., 10(393). https://doi.org/10.1007/s40069-016-0132-0
- American Concrete Institute ACI (2008), Prediction of creep, shrinkage, and temperature effects in concrete structures. ACI-209R-08, ACI Committee 209.
- Awrejcewicz, J., Krysko, A.V., Zagniboroda N.A., Dobriyan, V.V. and Krysko, V.A. (2015), "On the general theory of chaotic dynamics of flexible curvilinear Euler-Bernoulli beams", Nonlinear Dynam., 79(1), 11-29. https://doi.org/10.1007/s11071-014-1641-5.
- Awrejcewicz, J., Krysko, V.A., Pavlov, S.P., Zhigalov, M.V., Kalutsky, L.A. and Krysko, A.V. (2019), "Thermoelastic vibrations of a Timoshenko microbeam based on the modified couple stress theory", Nonlinear Dynam., 99(2). https://doi.org/10.1007/s11071-019-04976-w.
- Banerjee, J.R. and Ananthapuvirajah, A. (2019), "An exact dynamic stiffness matrix for a beam incorporating Rayleigh-Love and Timoshenko theories", Int. J. Mech. Sci., 150(2019), 337-347. https://doi.org/10.1016/j.ijmecsci.2018.10.012.
- Bathe, K.J. and Wilson, E.L. (1973), "Solution methods for eigenvalue problems in structural mechanics", Int. J. Numer. Methods Eng., https://doi.org/10.1002/nme.1620060207.
- Bazant, Z.P. (1972), "Prediction of concrete creep effects using age-adjusted effective modulus method", ACI Struct. J., 69(4), 212-219. DOI:10.14359/11265.
- Bert, C.W. (1984), "Improved technique for estimating buckling loads", J. Eng. Mech. - ASCE, 110(12), https://doi.org/10.1061/(ASCE)0733-9399(1984)110:12(1655)
- Bert, CW. (1987), "Application of a version of the Rayleigh technique to problems of bars, beams, columns, membranes, and plates", J Sound Vib., 119(2), DOI:10.1016/0022-460X(87)90457-3
- B-Jahromi, A., Rotimi, A., Tovi, S., Goodchild, C. and Rizzuto, J. (2019), "Evaluation of the influence of creep and shrinkage determinants on column shortening in mid-rise buildings", Adv. Concr. Constr., 5(2), 155-171. https://doi.org/10.12989/acc.2017.5.2.155.
- Bradford, M.A. and Gilbert, R.I. (1992), "Analysis of circular RC columns for short- and long-term deformations", J. Struct. Eng. - ASCE, 118(3). https://doi.org/10.1061/(ASCE)0733-9445(1992)118:3(669).
- Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007), "An analytical-numerical procedure for cracking and time-dependent effects in continuous composite beams under service load", Steel Compos. Struct., 7(3), 219-240. http://dx.doi.org/10.12989/scs.2007.7.3.219.
- Clough, R.W. and Penzien, J. (1993), "Dynamics of Structures", McGraw-Hill International Editions, 2nd Edition, Taiwan.
- Dezi, L., Gara, F. and Leoni, G. (2006), "Construction sequence modeling of continuous steel-concrete composite bridge decks", Steel Compos Struct., 6(2), 123-138. http://dx.doi.org/10.12989/scs.2006.6.2.123.
- Euler L. (1744), "De Curvis Elasticis, Additamentum I to his Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes", Lausanne and Geneva.
- Fragiacomo, M., Amadio, C. and Macorini, L. (2002), "Influence of viscous phenomena on steel-concrete composite beams with normal or high-performance slab", Steel Compos. Struct., 2(2), 85-98. http://dx.doi.org/10.12989/scs.2002.2.2.085.
- Greenhill, A.G. (1881), "Determination of the greatest height consistent with stability that a vertical pole or mast can be made, and the greatest height to which a tree of given proportions can grow", Proceedings of the Cambridge Philosophical Society, 4, 65-73, London.
- Jung, S.Y., Kim, N.I. and Shin, D.K. (2007), "Viscoelastic behavior on composite beam using nonlinear creep model", Steel Compos. Struct., 7(5), 355-376. http://dx.doi.org/10.12989/scs.2007.7.5.355.
- Johnston, B.G. (1983), "Column buckling theory: Historic highlights", J. Struct. Eng ASCE., 109(9). https://doi.org/10.1061/(ASCE)0733-9445(1983)109:9(2086)
- Karimi, K.; Tait, M.J.; El-Dakhakhni, W. W. (2013), "Analytical modeling and axial load design of a novel FRP-encased steel-concrete composite column for various slenderness ratios", Eng. Struct., 46(2013), 526-534. http://dx.doi.org/10.1016/j.engstruct.2012.08.016.
- Kataoka L.T. and Bittencourt, T.N. (2014), "Numerical and experimental analysis of time-dependent load transfer in reinforced concrete columns", Rev. IBRACON Estrut. Mater.. 7(5), http://dx.doi.org/10.1590/S1983-41952014000500003.
- Kawano, A. and Warner, R.F. (1996), "Model formulations for numerical creep calculations for concrete", J. Struct. Eng. ASCE, 122(3). https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(284).
- Kumar, P. and Pratiher, B. (2019), "Modal analysis and dynamic responses of a rotating Cartesian manipulator with generic payload and asymmetric load", Mech. Based Des. Struct., 48(7), https://doi.org/10.1080/15397734.2019.1624174.
- Leissa, A.W. (2005), "The historical bases of the Rayleigh and Ritz methods", J. Sound Vib., 287(4-5). https://doi.org/10.1016/j.jsv.2004.12.021.
- Li, J., Huo, Q., Li, X., Kong, X. and Wu, W. (2014), "Dynamic stiffness analysis of steel-concrete composite beams", Steel Compos Struct., 16(6), 577-593. http://dx.doi.org/10.12989/scs.2014.16.6.577.
- Lord Rayleigh (1877), Theory of Sound, New York: Dover Publications, re-issued.
- Lubbers, L.A., van Hecke, M. and Coulais, C. (2017), "A nonlinear beam model to describe the post-buckling of wide neo-Hookean beams", J. Mech. Phys. Sol., 106(191-206). https://doi.org/10.1016/j.jmps.2017.06.001.
- Madureira, E.L., Siqueira, T.M. and Rodrigues, E.C. (2013), "Creep strains on reinforced concrete columns", Rev. IBRACON Estrut. Mater., 6(4). http://dx.doi.org/10.1590/S1983-41952013000400003.
- Marin, M.C. and El Debs, M.K. (2012), "Contribution to assessing the stiffness reduction of structural elements in the global stability analysis of precast concrete multi-story buildings". Rev. IBRACON Estrut. Mater., 5(3), 316-342. http://dx.doi.org/10.1590/S1983-41952012000300005
- Maru, S., Asfaw, M. and Nagpal, A.K. (2001), "Consistent Procedure for Creep and Shrinkage Effects in RC Frames", J Struct. Eng. - ASCE., 127(7). https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(726).
- Mehta, P.K., Monteiro, P.J.M. and Filho, A.C. (1994), "Concreto: estrutura, propriedades e materiais" (Concrete: Structure, properties and materials), Ed. PINI, Sao Paulo, Brasil, (In Portuguese).
- Mirmiran, A., Shahawy, M. aqnd Beitleman, T. (2001), "Slenderness limit for hybrid FRP-concrete columns", J. Compos. Constr., 5(1). https://doi.org/10.1061/(ASCE)1090-0268(2001)5:1(26).
- Murawski, K. (2017), "Technical stability of continuously loaded thin-walled slender columns", 1 Ed., Lulu Press, Inc., North Carolina.
- Samral, R.M. (1995), "New analysis for creep behavior in concrete columns", J. Struct. Eng. - ASCE., 121(3). https://doi.org/10.1061/(ASCE)0733-9445(1995)121:3(399).
- SAP2000 (2019), Analysis reference manual. Integrated software for structural analysis and design. Berkeley, California: Com-puters and Structures, Inc
- Sharma, R.K., Maru, S. and Nagpal, A.K. (2004), "Simplified procedure for creep and shrinkage effects in reinforced concrete frames", J. Struct. Eng. - ASCE., 130(10). https://doi.org/10.1061/(ASCE)07339445(2004)130:10(1545).
- Szyszkowski, W. and Glockner, P.G. (1985), "An incremental formulation of hereditary constitutive laws applied to uniaxial problems", Int. J. Mech. Sci., 27(9), 583-594. https://doi.org/10.1016/0020-7403(85)90074-8.
- Tamayo, J.L.P., Morsch, I.B. and Awruch, A.M. (2015), "Short-time numerical analysis of steel-concrete composite beams", J Braz. Soc. Mech. Sci. Eng., 37(1097). https://doi.org/10.1007/s40430-014-0237-9.
- Temple, G. and Bickley, W.G. (1933), "Rayleigh's Principle and Its Applications to Engineering", Oxford University Press, Humphrey Milford, London.
- Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability. 2nd Ed., New York: McGraw-Hill Book Company
- Uzny, S. (2011), "An elastically supported geometrically nonlinear slender system subjected to a specific load in respect of bifurcational load and free vibrations", Int. J. Bifurc. Chaos., 21(10), 2983-2992. https://doi.org/10.1142/S0218127411030295.
- Wahrhaftig, A.M., Brasil, R.M.L.R.F. and Balthazar, J.M. (2013), "The first frequency of cantilever bars with geometric effect: a mathematical and experimental evaluation". J. Braz. Soc. Mech. Sci. Eng., https://doi.org/10.1007/s40430-013-0043-9.
- Wahrhaftig, A.M. and Brasil, R.M.L.R.F. (2017), "Initial undamped resonant frequency of slender structures considering nonlinear geometric effects: The case of a 60.8 m-high mobile phone mast", J. Braz. Soc. Mech. Sci. Eng., 39(3), 725-735. https://doi.org/10.1007/s40430-016-0547-1.
- Wahrhaftig, A.M. (2019), "Analysis of the first modal shape using two case studies", Int. J. Comput. Meth., 16(6). https://doi.org/10.1142/S0219876218400194.
- Wahrhaftig, A.M., Silva, M.A. and Brasil, R.M.L.R.F. (2019), "Analytical determination of the vibration frequencies and buckling loads of slender reinforced concrete towers", Lat. Am. J. Solids Stru., 16(5). http://dx.doi.org/10.1590/1679-78255374.
- Wang, T., Bradford, M.A. and Gilbert, R.I. (2006), "Creep buckling of shallow parabolic concrete arches", J. Struct. Eng., 132(10), 1641-1649. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:10(1641).
- Yaghoobi, H., Valipour, M.S., Fereidoon, A. and Khoshnevisrad, P. (2014), "Analytical study on post-buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation under thermo-mechanical loadings using VIM", Steel Compos Struct., 17(5), 753-776. http://dx.doi.org/10.12989/scs.2014.17.5.753.
- Zhou, W., Li, Y., Shi, Z. and Lin, J. (2019), "An analytical solution for elastic buckling analysis of stiffened panel subjected to pure bending", Int. J. Mech. Sci., 161(162), https://doi.org/10.1016/j.ijmecsci.2019.105024.
- Zienkiewicz, O.C, Watson, M. and King, I.P. (1968), "A Numerical method of visco-elastic stress analysis", Int. J. Mech. Sci., 10(1), 807-827. https://doi.org/10.1016/0020-7403(68)90022-2.