DOI QR코드

DOI QR Code

MIGSHIELD: A new model-based interactive point kernel gamma ray shielding package for virtual environment

  • Li, Mengkun (School of Electric Power, South China University of Technology (SCUT)) ;
  • Xu, Zhihui (State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment) ;
  • Li, Wei (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Yang, Jun (School of Electric Power, South China University of Technology (SCUT)) ;
  • Yang, Ming (School of Electric Power, South China University of Technology (SCUT)) ;
  • Lu, Hongxin (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Dai, Xinyu (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
  • Received : 2019.07.03
  • Accepted : 2019.12.29
  • Published : 2020.07.25

Abstract

In this paper, 3D model-based interactive gamma ray shielding package (MIGSHIELD) is developed in virtual reality platform for windows operating system. In MIGSHIELD, the computational methodology is based on point kernel algorithm (PK), several key parameters of PK are obtained using new technique and new methods. MIGSHIELD has interactive capability with virtual world. The main features made in the MIGSHIELD are (i) handling of physical information from virtual world, (ii) handling of arbitrary shapes radioactive source, (iii) calculating the mean free path of gamma ray, (iv) providing interactive function between PK and virtual world, (v) making better use of PK for virtual simulation, (vi) plug and play. The developed package will be of immense use for calculations involving radiation dose assessment in nuclear safety and contributing to fast radiation simulation for virtual nuclear facilities.

Keywords

References

  1. B. Lindell, A history of radiation protection, Radiat. Prot. Dosim. 68 (1996) 83-95. https://doi.org/10.1093/oxfordjournals.rpd.a031856
  2. J.F.E. Briesmeister, MCNP - A General Monte Carlo N-Particle Transport Code, 2010.
  3. A. Ferrari, P.R. Sala, A. Fasso, J. Ranft, CERN 2005-10/SLAC-R-773 preprint, FLUKA: A Multi-Particle Transport Code, 2005.
  4. I.M. Prokhorets, S.I. Prokhorets, M.A. Khazhmuradov, Point-kernel method for radiation fields simulation, Prob. Atomic Sci. Technol. 5 (2007) 106-109.
  5. K.V. Subbaiah, R. Sarangapani, IGSHIELD: a new interactive point kernel gamma ray shielding code, Ann. Nucl. Energy 35 (2008) 2234-2242. https://doi.org/10.1016/j.anucene.2008.09.007
  6. ANS-6.1.1 Working Group, M.E. Battat, American National Standard Neutron and Gamma-Ray Flux-To-Dose Rate Factors, ANSI/ANS-6.1.1-1977 (N666), American Nuclear Society, LaGrange Park, Illinois, 1977.
  7. ICRP Committee 3 Task Group, P. Grande, M.C. O'Riordan, Data for Protection against Ionizing Radiation from External Sources: Supplement to ICRP Publication 15, ICRP-21, International Commission on Radiological Protection, Pergamon Press, 1971.
  8. Y. Harima, An approximation of gamma ray buildup factor by modified geometric progression, Nucl. Sci. Eng. 83 (1983) 299-309. https://doi.org/10.13182/NSE83-A18222
  9. U.T. Lin, S.H. Jiang, A dedicated empirical formula for $\gamma$-ray buildup factors for a pointisotropic source in stratified shields, Radiat. Phys. Chem. 48 (1996) 389-401. https://doi.org/10.1016/0969-806X(95)00461-6
  10. Monte Carlo Team, MCNP-A General Purpose Monte Carlo N-Particle Transport Code, Version 5. LA-UR-03-1987, Los Alamos National Laboratory, 2003.
  11. ANSI/ANS-6, 4.3. Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials, American Nuclear Society, La Grange Park in Illinois, 1991.
  12. F. Vermeersch, Dose Assessment and Dose Optimisation in Decommissioning Using the VISIPLAN 3D ALARA Planning Tool, Radiation protection and decommissioning ABR/BVS, Brussels, 2003, pp. 1-7.
  13. J. Bratteli, HVRC VRdose Planner User Guide, Institute for Energy Technology Halden Virtual Reality Centre, 2015, pp. 1-64.
  14. L.Q. Yang, Y.K. Liu, M.J. Peng, et al., A fast gamma-ray dose rate assessment method for complex geometries based on stylized model reconstruction, Nucl. Eng. Technol. 51 (2019) 1436-1443. https://doi.org/10.1016/j.net.2019.03.004
  15. Yang L.Q., Liu Y.K., Peng M.J., et al. A gamma-ray dose rate assessment method for arbitrary shape geometries based on voxelization algorithm, Radiat. Phys. Chem., 158 (2019) 122-130. https://doi.org/10.1016/j.radphyschem.2019.02.015
  16. O. Vela, E. De Burgos, J.M. Perez, Dose rate assessment in complex geometries, IEEE Trans. Nucl. Sci. 53 (2006) 304-311. https://doi.org/10.1109/TNS.2006.869831