DOI QR코드

DOI QR Code

New Era of Management Concept on Pulmonary Fibrosis with Revisiting Framework of Interstitial Lung Diseases

  • Azuma, Arata (Department of Pulmonary Medicine and Oncology, Nippon Medical School) ;
  • Richeldi, Luca (Respiratory Medicine, Fondazione Policlinico A. Gemelli IRCCS)
  • Received : 2020.01.26
  • Accepted : 2020.03.10
  • Published : 2020.07.31

Abstract

The disease concept of interstitial lung disease with idiopathic pulmonary fibrosis at its core has been relied on for many years depending on morphological classification. The separation of non-specific interstitial pneumonia with a relatively good prognosis from usual interstitial pneumonia is also based on the perception that morphology enables predict the prognosis. Beginning with dust-exposed lungs, initially, interstitial pneumonia is classified by anatomical pathology. Diagnostic imaging has dramatically improved the diagnostic technology for surviving patients through the introduction of high-resolution computed tomography scan. And now, with the introduction of therapeutics, the direction of diagnosis is turning. It can be broadly classified into to make known the importance of early diagnosis, and to understand the importance of predicting the speed of progression/deterioration of pathological conditions. For this reason, the insight of "early lesions" has been discussed. There are reports that the presence or absence of interstitial lung abnormalities affects the prognosis. Searching for a biomarker is another prognostic indicator search. However, as is the case with many chronic diseases, pathological conditions that progress linearly are extremely rare. Rather, it progresses while changing in response to environmental factors. In interstitial lung disease, deterioration of respiratory functions most closely reflect prognosis. Treatment is determined by combining dynamic indicators as faithful indicators of restrictive impairments. Reconsidering the history being classified under the disease concept, the need to reorganize treatment targets based on common pathological phenotype is under discussed. What is the disease concept? That aspect changes with the discussion of improving prognosis.

Keywords

References

  1. von Leube WO. Spezielle Diagnose der Inneren Krankheiten. Ein Handbuch fur Arzte und Studierende, nach Vorlesungen bearbeitet [Special diagnosis of internal diseases: manual for doctors and students, edited after lectures]. Leipzig: F.C.W. Vogel; 1895.
  2. Liebow AA. Definition and classification of interstitial pneumonias in human pathology. Prog Respir Res 1975;8:1-33. https://doi.org/10.1159/000398285
  3. Liebow AA. Pathology of coal workers' pneumoconiosis. IMS Ind Med Surg 1970;39:118-9.
  4. Katzenstein AL, Fiorelli RF. Nonspecific interstitial pneumonia/fibrosis: histologic features and clinical significance. Am J Surg Pathol 1994;18:136-47. https://doi.org/10.1097/00000478-199402000-00003
  5. Epler GR, Colby TV, McLoud TC, Carrington CB, Gaensler EA. Bronchiolitis obliterans organizing pneumonia. N Engl J Med 1985;312:152-8. https://doi.org/10.1056/NEJM198501173120304
  6. Ziesche R, Hofbauer E, Wittmann K, Petkov V, Block LH. A preliminary study of long-term treatment with interferon gamma-1b and low-dose prednisolone in patients with idiopathic pulmonary fibrosis. N Engl J Med 1999;341:1264-9. https://doi.org/10.1056/NEJM199910213411703
  7. King TE Jr, Albera C, Bradford WZ, Costabel U, Hormel P, Lancaster L, et al. Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): a multicentre, randomised, placebo-controlled trial. Lancet 2009;374:222-8. https://doi.org/10.1016/S0140-6736(09)60551-1
  8. Azuma A. Pirfenidone: antifibrotic agent for idiopathic pulmonary fibrosis. Expert Rev Respir Med 2010;4:301-10. https://doi.org/10.1586/ers.10.32
  9. Raghu G, Johnson WC, Lockhart D, Mageto Y. Treatment of idiopathic pulmonary fibrosis with a new antifibrotic agent, pirfenidone: results of a prospective, open-label Phase II study. Am J Respir Crit Care Med 1999;159:1061-9. https://doi.org/10.1164/ajrccm.159.4.9805017
  10. Azuma A, Nukiwa T, Tsuboi E, Suga M, Abe S, Nakata K, et al. Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2005;171:1040-7. https://doi.org/10.1164/rccm.200404-571OC
  11. Taniguchi H, Ebina M, Kondoh Y, Ogura T, Azuma A, Suga M, et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J 2010;35:821-9. https://doi.org/10.1183/09031936.00005209
  12. Azuma A, Usuki J. Novel therapy for idiopathic pulmonary fibrosis: how to evaluate the efficacy? Respir Med CME 2008;1:75-81. https://doi.org/10.1016/j.rmedc.2008.06.001
  13. Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet 2011;377:1760-9. https://doi.org/10.1016/S0140-6736(11)60405-4
  14. King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 2014;370:2083-92. https://doi.org/10.1056/NEJMoa1402582
  15. Idiopathic Pulmonary Fibrosis Clinical Research Network, Raghu G, Anstrom KJ, King TE Jr, Lasky JA, Martinez FJ. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med 2012;366:1968-77. https://doi.org/10.1056/NEJMoa1113354
  16. Richeldi L, Costabel U, Selman M, Kim DS, Hansell DM, Nicholson AG, et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med 2011;365:1079-87. https://doi.org/10.1056/NEJMoa1103690
  17. Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 2014;370:2071-82. https://doi.org/10.1056/NEJMoa1402584
  18. Demedts M, Behr J, Buhl R, Costabel U, Dekhuijzen R, Jansen HM, et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med 2005;353:2229-42. https://doi.org/10.1056/NEJMoa042976
  19. Crestani B, Huggins JT, Kaye M, Costabel U, Glaspole I, Ogura T, et al. Long-term safety and tolerability of nintedanib in patients with idiopathic pulmonary fibrosis: results from the open-label extension study, INPULSIS-ON. Lancet Respir Med 2019;7:60-8. https://doi.org/10.1016/S2213-2600(18)30339-4
  20. Richeldi L, Crestani B, Azuma A, Kolb M, Selman M, Stansen W, et al. Outcomes following decline in forced vital capacity in patients with idiopathic pulmonary fibrosis: results from the INPULSIS and INPULSIS-ON trials of nintedanib. Respir Med 2019;156:20-5. https://doi.org/10.1016/j.rmed.2019.08.002
  21. Oldham JM, Adegunsoye A, Valenzi E, Lee C, Witt L, Chen L, et al. Characterisation of patients with interstitial pneumonia with autoimmune features. Eur Respir J 2016;47:1767-75. https://doi.org/10.1183/13993003.01565-2015
  22. Distler O, Highland KB, Gahlemann M, Azuma A, Fischer A, Mayes MD, et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N Engl J Med 2019;380:2518-28. https://doi.org/10.1056/NEJMoa1903076
  23. Flaherty KR, Wells AU, Cottin V, Devaraj A, Walsh SL, Inoue Y, et al. Nintedanib in progressive fibrosing interstitial lung diseases. N Engl J Med 2019;381:1718-27. https://doi.org/10.1056/NEJMoa1908681
  24. Maher TM, Corte TJ, Fischer A, Kreuter M, Lederer DJ, Molina-Molina M, et al. Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med 2020;8:147-57. https://doi.org/10.1016/s2213-2600(19)30341-8
  25. Putman RK, Hatabu H, Araki T, Gudmundsson G, Gao W, Nishino M, et al. Association between interstitial lung abnormalities and all-cause mortality. JAMA 2016;315:672-81. https://doi.org/10.1001/jama.2016.0518
  26. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 2011;183:788-824. https://doi.org/10.1164/rccm.2009-040GL
  27. Jenkins RG, Simpson JK, Saini G, Bentley JH, Russell AM, Braybrooke R, et al. Longitudinal change in collagen degradation biomarkers in idiopathic pulmonary fibrosis: an analysis from the prospective, multicentre PROFILE study. Lancet Respir Med 2015;3:462-72. https://doi.org/10.1016/S2213-2600(15)00048-X
  28. Maher TM, Stowasser S, Nishioka Y, White ES, Cottin V, Noth I, et al. Biomarkers of extracellular matrix turnover in patients with idiopathic pulmonary fibrosis given nintedanib (INMARK study): a randomised, placebo-controlled study. Lancet Respir Med 2019;7:771-9. https://doi.org/10.1016/s2213-2600(19)30255-3
  29. Nance T, Smith KS, Anaya V, Richardson R, Ho L, Pala M, et al. Transcriptome analysis reveals differential splicing events in IPF lung tissue. PLoS One 2014;9:e97550. https://doi.org/10.1371/journal.pone.0097550
  30. Whitney SN, McGuire AL, McCullough LB. A typology of shared decision making, informed consent, and simple consent. Ann Intern Med 2004;140:54-9. https://doi.org/10.7326/0003-4819-140-1-200401060-00012
  31. Hoffmann TC, Montori VM, Del Mar C. The connection between evidence-based medicine and shared decision making. JAMA 2014;312:1295-6. https://doi.org/10.1001/jama.2014.10186

Cited by

  1. Pharmacological treatment of idiopathic pulmonary fibrosis and fibrosing interstitial lung diseases: current trends and future directions vol.5, pp.1, 2021, https://doi.org/10.23838/pfm.2020.00205
  2. Current and future treatment for idiopathic pulmonary fibrosis vol.64, pp.4, 2021, https://doi.org/10.5124/jkma.2021.64.4.256