DOI QR코드

DOI QR Code

Comparison Between Sodium Acetate and Sodium Chloride in Parenteral Nutrition for Very Preterm Infants on the Acid-Base Status and Neonatal Outcomes

  • Ali, Adli (Department of Paediatrics, Faculty of Medicine, University Kebangsaan Malaysia) ;
  • Ong, Ee-Yan (Department of Pharmacy, University Kebangsaan Malaysia Medical Center) ;
  • Singh, Birinder Kaur Sadu (Department of Pharmacy, University Kebangsaan Malaysia Medical Center) ;
  • Cheah, Fook-Choe (Department of Paediatrics, Faculty of Medicine, University Kebangsaan Malaysia)
  • Received : 2019.09.24
  • Accepted : 2020.05.01
  • Published : 2020.07.15

Abstract

Purpose: To compare between sodium acetate (SA) and sodium chloride (SC) in parenteral nutrition (PN) with associated metabolic acidosis and neonatal morbidities in preterm infants. Methods: Preterm infants below 33 weeks gestational age, and with a birth weight under 1,301 g were enrolled and further stratified into two groups: i) <1,000 g, or ii) ≥1,000 g in birth weight. The subjects were randomized to receive PN containing SA or SC within the first day of life. The results of routine blood investigations for the first 6 days of PN were collated, and the neonatal outcomes were recorded upon discharge or demise. Results: Fifty-two infants entered the study, with 26 in each group: 29 infants had extremely low birth weight (ELBW). There were no significant differences in birth weight, gestation, sex, exposure to chorioamnionitis and antenatal steroids, surfactant doses and duration of mechanical ventilation between groups. The SA group had significantly higher mean pH and base excess (BE) from days 4 to 6 than the SC (mean pH, 7.36 vs. 7.34; mean BE -1.6 vs. -3.5 [p<0.01]), with a two-fold increase in the mean BE among ELBW infants. Significantly fewer on SA required additional bicarbonate (n=4 vs. 13, p=0.01). The rate of bronchopulmonary dysplasia (BPD) was approximately four-fold lower in SA than SC (n=3 vs. 11, p<0.01). No significant differences were observed in necrotizing enterocolitis, patent ductus arteriosus, retinopathy of prematurity, cholestatic jaundice, and mortality between groups. Conclusion: The use of SA in PN was associated with reduced metabolic acidosis and fewer BPD.

Keywords

References

  1. Guidelines on paediatric parenteral nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr 2005;41 Suppl 2:S1-87.
  2. Valentine CJ, Puthoff TD. Enhancing parenteral nutrition therapy for the neonate. Nutr Clin Pract 2007;22:183-93. https://doi.org/10.1177/0115426507022002183
  3. Barnett HL, Vesterdal J. The physiologic and clinical significance of immaturity of kidney function in young infants. J Pediatr 1953;42:98-119.
  4. Heller H. The renal function of newborn infants. J Physiol 1944;102:429-40. https://doi.org/10.1113/jphysiol.1944.sp004048
  5. Ekblad H, Kero P, Takala J. Slow sodium acetate infusion in the correction of metabolic acidosis in premature infants. Am J Dis Child 1985;139:708-10.
  6. Groh-Wargo S, Ciaccia A, Moore J. Neonatal metabolic acidosis: effect of chloride from normal saline flushes. JPEN J Parenter Enteral Nutr 1988;12:159-61. https://doi.org/10.1177/0148607188012002159
  7. Peters O, Ryan S, Matthew L, Cheng K, Lunn J. Randomised controlled trial of acetate in preterm neonates receiving parenteral nutrition. Arch Dis Child Fetal Neonatal Ed 1997;77:F12-5. https://doi.org/10.1136/fn.77.1.F12
  8. Richards CE, Drayton M, Jenkins H, Peters TJ. Effect of different chloride infusion rates on plasma base excess during neonatal parenteral nutrition. Acta Paediatr 1993;82:678-82. https://doi.org/10.1111/j.1651-2227.1993.tb12789.x
  9. Kermorvant-Duchemin E, Iacobelli S, Eleni-Dit-Trolli S, Bonsante F, Kermorvant C, Sarfati G, et al. Early chloride intake does not parallel that of sodium in extremely-low-birth-weight infants and may impair neonatal outcomes. J Pediatr Gastroenterol Nutr 2012;54:613-9. https://doi.org/10.1097/MPG.0b013e318245b428
  10. Iacobelli S, Kermorvant-Duchemin E, Bonsante F, Lapillonne A, Gouyon JB. Chloride balance in preterm infants during the first week of life. Int J Pediatr 2012;2012:931597. https://doi.org/10.1155/2012/931597
  11. Handy JM, Soni N. Physiological effects of hyperchloraemia and acidosis. Br J Anaesth 2008;101:141-50. https://doi.org/10.1093/bja/aen148
  12. McCague A, Dermendjieva M, Hutchinson R, Wong DT, Dao N. Sodium acetate infusion in critically ill trauma patients for hyperchloremic acidosis. Scand J Trauma Resusc Emerg Med 2011;19:24. https://doi.org/10.1186/1757-7241-19-24
  13. Skutches CL, Sigler MH, Teehan BP, Cooper JH, Reichard GA. Contribution of dialysate acetate to energy metabolism: metabolic implications. Kidney Int 1983;23:57-63. https://doi.org/10.1038/ki.1983.11
  14. Tsai IC, Huang JW, Chu TS, Wu KD, Tsai TJ. Factors associated with metabolic acidosis in patients receiving parenteral nutrition. Nephrology (Carlton) 2007;12:3-7. https://doi.org/10.1111/j.1440-1797.2006.00748.x
  15. Vinay P, Prud'Homme M, Vinet B, Cournoyer G, Degoulet P, Leville M, et al. Acetate metabolism and bicarbonate generation during hemodialysis: 10 years of observation. Kidney Int 1987;31:1194-204. https://doi.org/10.1038/ki.1987.128
  16. Sugiura S, Inagaki K, Noda Y, Nagai T, Nabeshima T. Acid load during total parenteral nutrition: comparison of hydrochloric acid and acetic acid on plasma acid-base balance. Nutrition 2000;16:260-3. https://doi.org/10.1016/S0899-9007(99)00304-4
  17. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001;163:1723-9. https://doi.org/10.1164/ajrccm.163.7.2011060
  18. Kenet G, Kuperman AA, Strauss T, Brenner B. Neonatal IVH--mechanisms and management. Thromb Res 2011;127 Suppl 3:S120-2. https://doi.org/10.1016/S0049-3848(11)70032-9
  19. Low JA, Lindsay BG, Derrick EJ. Threshold of metabolic acidosis associated with newborn complications. Am J Obstet Gynecol 1997;177:1391-4. https://doi.org/10.1016/S0002-9378(97)70080-2
  20. Cooke RW. Factors associated with periventricular haemorrhage in very low birthweight infants. Arch Dis Child 1981;56:425-31. https://doi.org/10.1136/adc.56.6.425
  21. Jochum F, Moltu SJ, Senterre T, Nomayo A, Goulet O, Iacobelli S, et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Fluid and electrolytes. Clin Nutr 2018;37(6 Pt B):2344-53. https://doi.org/10.1016/j.clnu.2018.06.948
  22. Cash RA, Toha KM, Nalin DR, Huq Z, Phillips RA. Acetate in the correction of acidosis secondary to diarrhoea. Lancet 1969;2:302-3.
  23. Watten RH, Gutman RA, Fresh JW. Comparison of acetate, lactate, and bicarbonate in treating the acidosis of cholera. Lancet 1969;2:512-4. https://doi.org/10.1016/S0140-6736(69)90215-3
  24. Kluckow M, Evans N. Early echocardiographic prediction of symptomatic patent ductus arteriosus in preterm infants undergoing mechanical ventilation. J Pediatr 1995;127:774-9. https://doi.org/10.1016/S0022-3476(95)70172-9
  25. Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N Engl J Med 1967;276:357-68. https://doi.org/10.1056/NEJM196702162760701
  26. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 1978;92:529-34. https://doi.org/10.1016/S0022-3476(78)80282-0
  27. Bell MJ, Ternberg JL, Feigin RD, Keating JP, Marshall R, Barton L, et al. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann Surg 1978;187:1-7. https://doi.org/10.1097/00000658-197801000-00001
  28. Cryotherapy for Retinopathy of Prematurity Cooperative Group and the National Eye Institute. Multicenter trial of cryotherapy for retinopathy of prematurity. Preliminary results. Arch Ophthalmol 1988;106:471-9. https://doi.org/10.1001/archopht.1988.01060130517027
  29. International Committee for the Classification of Retinopathy of Prematurity. The International Classification of Retinopathy of Prematurity revisited. Arch Ophthalmol 2005;123:991-9. https://doi.org/10.1001/archopht.123.7.991
  30. Moyer V, Freese DK, Whitington PF, Olson AD, Brewer F, Colletti RB, et al. Guideline for the evaluation of cholestatic jaundice in infants: recommendations of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2004;39:115-28. https://doi.org/10.1097/00005176-200408000-00001
  31. Dupont WD, Plummer WD Jr. Power and sample size calculations. A review and computer program. Control Clin Trials 1990;11:116-28. https://doi.org/10.1016/0197-2456(90)90005-M
  32. Cheng K. Relationship between chloride status and metabolic acidosis in preterm neonates requiring PN. 67th Annual Meeting, British Paediatric Association 1995:59 (abstract).
  33. Eliahou HE, Feng PH, Weinberg U, Iaina A, Reisin E. Acetate and bicarbonate in the correction of uraemic acidosis. Br Med J 1970;4:399-401. https://doi.org/10.1136/bmj.4.5732.399
  34. Skutches CL, Holroyde CP, Myers RN, Paul P, Reichard GA. Plasma acetate turnover and oxidation. J Clin Invest 1979;64:708-13. https://doi.org/10.1172/JCI109513
  35. Ishiguro K, Ando T, Maeda O, Ohmiya N, Niwa Y, Goto H. Acetate inhibits NFAT activation in T cells via importin beta1 interference. Eur J Immunol 2007;37:2309-16. https://doi.org/10.1002/eji.200737180
  36. O'Donovan DJ, Fernandes CJ. Free radicals and diseases in premature infants. Antioxid Redox Signal 2004;6:169-76. https://doi.org/10.1089/152308604771978471
  37. Zia MT, Csiszar A, Labinskyy N, Hu F, Vinukonda G, LaGamma EF, et al. Oxidative-nitrosative stress in a rabbit pup model of germinal matrix hemorrhage: role of NAD(P)H oxidase. Stroke 2009;40:2191-8. https://doi.org/10.1161/strokeaha.108.544759
  38. Dave V, Childs T, Xu Y, Ikegami M, Besnard V, Maeda Y, et al. Calcineurin/Nfat signaling is required for perinatal lung maturation and function. J Clin Invest 2006;116:2597-609. https://doi.org/10.1172/jci27331.
  39. Dave V, Childs T, Whitsett JA. Nuclear factor of activated T cells regulates transcription of the surfactant protein D gene (Sftpd) via direct interaction with thyroid transcription factor-1 in lung epithelial cells. J Biol Chem 2004;279:34578-88. https://doi.org/10.1074/jbc.M404296200