JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **33**, No. 1, February 2020 http://dx.doi.org/10.14403/jcms.2020.33.1.89

THE INTEGRATION BY PARTS FOR THE AP-HENSTOCK INTEGRAL

JU HAN YOON

ABSTRACT. In this paper we introduce the concept of the AP-Henstock integral and prove the integration by parts formula for the AP-Henstock integral.

1. Introduction and Preliminaries

The Henstock integral of real valued functions was first defined by Henstock in 1963 ([2,3]). It is well known([3]) that the Henstock integral is more powerful and simpler than the Lebesgue and Feynman integrals.

In 1994, R. A. Gordon introduced the AP-Henstock integral which is the extension of the Henstock integral and investigated some properties([3,5]).

In this paper we introduce the concept of the AP-Henstock integral and prove the integration by parts formula for the AP-Henstock integral.

Let E be a measurable set and let x be a real number. The density of E at x is defined by

$$d_x E = \lim_{h \to 0+} \frac{\mu(E \cap (x - h, x + h))}{2h},$$

provided the limit exists. The point x is called a point of density of E if $d_x E = 1$. The E^d represents the set of all $x \in E$ such that x is a point of density of E.

A function $f : [a, b] \to R$ is said to be approximately continuous at $c \in [a, b]$ if there exists a measurable set $E \subset [a, b]$ such that $c \in E^d$ and $f \mid_E$ is continuous at c.

A function $F : [a, b] \to R$ is said to be approximately differentiable at $c \in [a, b]$ if there exists a measurable set $E \subset [a, b]$ such that $c \in E^d$

Received December 21, 2019; Accepted January 20, 2020.

²⁰¹⁰ Mathematics Subject Classification: Primary 12A34, 56B34; Secondary 78C34.

Key words and phrases: AP-Henstock Integral; Integration by parts.

Ju Han Yoon

and

$$\lim_{x \to c, x \in E} \frac{F'(x) - F'(c)}{x - c}$$

exists. The approximate derivative of F at c is denoted by $F'_{ap}(c)$.

An approximate neighborhood (or ap-nbd) of $x \in [a, b]$ is a measurable set $S_x \subset [a, b]$ containing x as a point of density. For every $x \in E \subset [a, b]$, choose an ap-nbd $S_x \subset [a, b]$ of x. Then we say that $S = \{S_x : x \in E\}$ is a choice on E. A tagged interval ([u, v], x) is said to fine to the choice $S = \{S_x\}$ if $u, v \in S_x$. Let $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq n\}$ be a finite collection of non-overlapping tagged intervals. If $P = \{([x_{i-1}, x_i], \xi_i) : 1 \leq i \leq n\}$ is fine to a choice S for each i, then we say that P is an S-fine. Let $E \subset [a, b]$. If P is S-fine and each $\xi_i \in E$, then P is called S-fine on E. If P is S-fine and $[a, b] = \bigcup_{i=1}^n [u_i, v_i]$, then we say that Pis an S-fine Henstock partition of [a, b].

2. Properties of the AP-Henstock Integral

DEFINITION 2.1. ([3]) A function $f : [a, b] \to R$ is AP-Henstock integrable if there exists a real number $A \in R$ such that for each $\epsilon > 0$ there is a choice S on [a, b] such that

$$\left|\sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) - A\right| < \epsilon$$

for each S-fine Henstock partition $P = \{([x_{i-1}, x_i], \xi_i) : 1 \le i \le n\}$ of [a, b]. In this case, A is called the AP-Henstock integral of f on [a, b], and we write $A = (AH) \int_a^b f$.

THEOREM 2.2. Let f and g be AP-Henstock integrable functions on [a, b]. then $\alpha f + \beta g$ is AP-Henstock integrable on [a, b] and $(AP) \int_a^b (\alpha f + \beta g) = \alpha (AP) \int_a^b f + \beta (AP) \int_a^b g$.

DEFINITION 2.3. Let $F : [a, b] \to R$ be measurable and let $E \subset [a, b]$. Then the function F is AC on E if for each $\epsilon > 0$ there exists a positive number δ such that $\sum_{i=1}^{n} |F(d_i) - F(c_i)| < \epsilon$ for each non-overlapping finite intervals $\{[c_i, d_i]\}_{i=1}^n$ on [a, b] satisfying $c_i, d_i \in E$ and $\sum_{i=1}^n (d_i - c_i)| < \delta$. F is ACG on E if $F \mid_E$ is continuous on E and E can be expressed as a countable union of sets on each of which F is AC.

DEFINITION 2.4. Let $F : [a, b] \to R$ be measurable and let $E \subset [a, b]$ be measurable. Then F is AC_S on E if for each $\epsilon > 0$ there exist a positive number η and a choice S on [a, b] such that $\sum_{i=1}^{n} |F(I_i)| < \epsilon$ for

90

each S- fine partial partition $D = \{(I_i, \xi_i)\}_{i=1}^n$ on [a, b] satisfying $\xi_i \in E$ and $\sum_{i=1}^n |I_i| < \eta$. The function F is ACG_S on E if E can be expressed as a countable union of sets on each of which F is AC_S .

THEOREM 2.5. ([3]) A function $f : [a, b] \to R$ is AP-Henstock integrable on [a, b] if and only if there exists an ACG_S function F on [a, b]such that $F'_{ap} = f$ almost everywhere on [a, b].

3. The Integration by parts for the AP-Henstock Integral

To prove the integration by parts for the AP-Henstock integral, we need the following theorem.

THEOREM 3.1. Let F and G be ACG_S on [a, b]. If F and G are bounded on [a, b], then FG is ACG_S on [a, b].

Proof. Since F is ACG_S on [a, b], there exists a sequence of measurable sets $\{A_n\}$ such that $[a, b] = \bigcup_{i=1}^{\infty} A_n$ and F is AC_S on each A_n . Since G is ACG_S on [a, b], there exists a sequence of measurable sets $\{B_m\}_{m=1}^{\infty}$ such that $[a, b] = \bigcup_{m=1}^{\infty} B_m$ and G is AC_S on each B_m . We have

$$[a,b] = \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} (A_n \cap B_m).$$

We rewrite the sequence $\{A_n \cap B_m\}_{n,m \ge 1}$ as $\{E_k\}_{k \ge 1}$. Then obiously F and G are AC_S on each E_k . Now let us show that FG is AC_S on each E_k . Let $|F(t)| \le M$ and $|G(t)| \le M$ for each $t \in [a, b]$ and fix k. Let $\epsilon > 0$. Since F is AC_S on E_k , there exist a positive η_1 and a choice S_1 on [a, b] such that

$$\sum_{i=1}^{p} \mid F(I_i) \mid < \frac{\epsilon}{2M}$$

for each S_1 - fine partial partition $\{(I_i, \xi_i)\}_{i=1}^p$ satisfying $\sum_{i=1}^p |I_i| < \eta_1$ and $\xi_i \in E_k$. Since G is AC_S on E_k , there exists a positive $\eta_2 > 0$ and a choice S_2 on [a, b] such that

$$\sum_{i=1}^{p} \mid G(J_i) \mid < \frac{\epsilon}{2M}$$

for each S_2 - fine partial partition $\{(J_i, \xi_i)\}_{i=1}^p$ satisfying $\sum_{i=1}^p |I_i| < \eta_2$ and $\xi_i \in E_k$.

Let $S = S_1 \cap S_2$ and let $\eta = \min\{\eta_1, \eta_2\}$. Let $D = \{([c_i, d_i], \xi_i\}_{i=1}^m$ be a *S*-fine partial partition that satisfying $\sum_{i=1}^m (d_i - c_i) < \eta$ and $\xi_i \in E_k$. Ju Han Yoon

Then we have

$$\sum_{i=1}^{m} | F(d_i)G(d_i) - F(c_i)G(c_i)$$

$$\leq \sum_{i=1}^{m} |F(d_i)G(d_i) - F(c_i)G(d_i)| + \sum_{i=1}^{m} |F(c_i)G(d_i) - F(c_i)G(c_i)|$$

$$\leq \sum_{i=1}^{m} |G(d_i)| |F(d_i) - F(c_i)| + \sum_{i=1}^{m} |F(c_i)| |G(d_i) - G(c_i)|$$

$$\leq M \sum_{i=1}^{m} |F(d_i) - F(c_i)| + M |\sum_{i=1}^{m} |G(d_i) - G(c_i)|$$

$$< M \frac{\epsilon}{2M} + M \frac{\epsilon}{2M} = \epsilon.$$

Hence, FG is AC_S on E_k .

THEOREM 3.2. Let $f: [a,b] \to R$ be AP-Henstock integrable on [a,b]and let $F(x) = (AH) \int_a^x f$ for each $x \in [a,b]$. If F is bounded on [a,b]and G is bounded ACG_S on [a,b], then fG is AP-Henstock integrable on [a,b] and

$$(AH)\int_{a}^{b} fG = F(b)G(b) - (AH)\int_{a}^{b} FG'.$$

Proof. Since F and G are ACG_S on [a, b], FG is ACG_S on [a, b] by Theorem 3.1. Hence, $(FG)'_{ap}$ is AP-Henstock integrable on [a, b]. Since F is bounded and measurable on [a, b]. F is Lebesgue integrable on [a, b]and $(FG)'_{ap}$ is AP-Henstock integrable on [a, b]. Since $fG = (FG)'_{ap} - FG'_{ap}$ almost everywhere on [a, b], fG is AP-Henstock integrable on [a, b]and

$$(AH)\int_{a}^{b} fG = (AH)\int_{a}^{b} (FG)'_{ap} - (AH)\int_{a}^{b} FG'_{ap}$$
$$= F(b)G(b) - (AH)\int_{a}^{b} FG'_{ap}.$$

92

THE INTEGRATION BY PARTS FOR THE AP-HENSTOCK INTEGRAL 93

COROLLARY 3.3. Let $f : [a,b] \to R$ be AP-Henstock integrable on [a,b] and let $F(x) = (AH) \int_a^x f$ for each $x \in [a,b]$. If F is bounded on [a,b] and G is AC on [a,b], then fG is AP-Henstock integrable on [a,b] and

$$(AH)\int_{a}^{b} fG = F(b)G(b) - (L)\int_{a}^{b} F'dG.$$

Proof. By theorem 3.2, the function fG is AP-Henstock integrable on [a, b]. Since F is bounded and measurable on [a, b], F is Lebesgue integrable on [a, b]. Also, since G is AC on [a, b], G' is Lebesgue integrable on [a, b] and $(L) \int_a^b FG' = (L) \int_a^b FdG$. Hence, we have

$$(AH)\int_{a}^{b} fG = F(b)G(b) - (L)\int_{a}^{b} FdG.$$

THEOREM 3.4. Let $f : [a, b] \to R$ be AP-Henstock integrable on [a, b]and let $F(x) = (AH) \int_a^x f$ for each $x \in [a, b]$. If F is bounded on [a, b]and G is ACG_S of bounded variation on [a, b], then fG is AP-Henstock integrable on [a, b] and

$$(AH)\int_{a}^{b} fG = F(b)G(b) - (L)\int_{a}^{b} FG'.$$

Proof. Since F is bounded ACG_S on [a, b] and G is bounded variation ACG_S on [a, b], FG is ACG_S on [a, b] by Theorem 3.1. Hence $(FG)'_{ap}$ is AP-Henstock integrable on [a, b]. Also, since F is bounded measurable on [a, b] and G' is Lebesgue integrable on [a, b], FG' is Lebesgue integrable on [a, b], FG' is Lebesgue integrable on [a, b]. Since $fG = (FG)'_{ap} - FG'$ almost everywhere on [a, b], fG is AP-Henstock integrable on [a, b] and

$$(AH)\int_a^b fG = F(b)G(b) - (L)\int_a^b FG'.$$

References

- K. S. Eun, J. H. Yoon, J. M. Park, and D. H. Lee, On Henstock integrals of interval-valued functions, Journal of the Chungcheoug Math. Soc., 25 (2012), 291–287.
- [2] P. Y. Lee, Lanzhou Lectures in Henstock Integration, World Scientific, 1989.
- [3] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Studia Math., 92, 1994.

Ju Han Yoon

- [4] Jae Myung Park, Deok Ho Lee, Ju Han Yoon, and Young Hyun Yu, The integration by parts for the C-integral, Journal of the Chungcheoug Math. Soc., 22 (2009), no. 3, 607–613.
- [5] Ju Han Yoon, Jae Myung Park, Young Kuk Kim, and Byung Moo Kim, The AP-Henstock Extension of the Dunford and Pettis Integrals, Journal of the Chungcheoug Math. Soc., 23 (2010), no. 4, 879–884.
- [6] J. H. Yoon, On AP-Henstock-Stieltjes integrals for fuzzy number-valued functions, Journal of the Chungcheoug Math. Soc., 31 (2018), no. 1, 151–160.

*

Department of Mathematics Education Chungbuk National University Cheongju 361-763, Republic of Korea *E-mail*: yoonjh@cbnu.ac.kr