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THE INTEGRATION BY PARTS FOR THE

AP-HENSTOCK INTEGRAL

JU HAN YOON

Abstract. In this paper we introduce the concept of the AP-
Henstock integral and prove the integration by parts formula for
the AP-Henstock integral.

1. Introduction and Preliminaries

The Henstock integral of real valued functions was first defined by
Henstock in 1963 ([2,3]). It is well known([3]) that the Henstock integral
is more powerful and simpler than the Lebesgue and Feynman integrals.

In 1994, R. A. Gordon introduced the AP-Henstock integral which
is the extension of the Henstock integral and investigated some proper-
ties([3,5]).

In this paper we introduce the concept of the AP-Henstock integral
and prove the integration by parts formula for the AP-Henstock integral.

Let E be a measurable set and let x be a real number. The density
of E at x is defined by

dxE = lim
h→0+

µ(E ∩ (x− h, x+ h))

2h
,

provided the limit exists. The point x is called a point of density of E if
dxE = 1 . The Ed represents the set of all x ∈ E such that x is a point
of density of E.

A function f : [a, b] → R is said to be approximately continuous at
c ∈ [a, b] if there exists a measurable set E ⊂ [a, b] such that c ∈ Ed and
f |E is continuous at c.

A function F : [a, b] → R is said to be approximately differentiable
at c ∈ [a, b] if there exists a measurable set E ⊂ [a, b] such that c ∈ Ed
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and

lim
x→c,x∈E

F (x)− F (c)

x− c
exists. The approximate derivative of F at c is denoted by F ′ap(c).

An approximate neighborhood(or ap-nbd) of x ∈ [a, b] is a measurable
set Sx ⊂ [a, b] containing x as a point of density. For every x ∈ E ⊂ [a, b],
choose an ap-nbd Sx ⊂ [a, b] of x. Then we say that S = {Sx : x ∈ E}
is a choice on E. A tagged interval ([u, v], x) is said to fine to the choice
S = {Sx} if u, v ∈ Sx. Let P = {([xi−1, xi], ξi) : 1 ≤ i ≤ n} be a finite
collection of non-overlapping tagged intervals. If P = {([xi−1, xi], ξi) :
1 ≤ i ≤ n} is fine to a choice S for each i, then we say that P is an
S-fine. Let E ⊂ [a, b]. If P is S-fine and each ξi ∈ E, then P is called
S-fine on E. If P is S-fine and [a, b] = ∪ni=1[ui, vi], then we say that P
is an S-fine Henstock partition of [a, b].

2. Properties of the AP-Henstock Integral

Definition 2.1. ([3]) A function f : [a, b] → R is AP-Henstock
integrable if there exists a real number A ∈ R such that for each ε > 0
there is a choice S on [a, b] such that

|
n∑

i=1

f(ξi)(xi − xi−1)−A| < ε

for each S-fine Henstock partition P = {([xi−1, xi], ξi) : 1 ≤ i ≤ n} of
[a, b]. In this case, A is called the AP-Henstock integral of f on [a, b],

and we write A = (AH)
∫ b
a f .

Theorem 2.2. Let f and g be AP-Henstock integrable functions on

[a, b]. then αf + βg is AP-Henstock integrable on [a, b] and (AP )
∫ b
a (αf+

βg) = α(AP )
∫ b
a f + β(AP )

∫ b
a g.

Definition 2.3. Let F : [a, b]→ R be measurable and let E ⊂ [a, b].
Then the function F is AC on E if for each ε > 0 there exists a positive
number δ such that

∑n
i |F (di)−F (ci)| < ε for each non-overlapping finite

intervals {[ci, di]}ni=1 on [a, b] satisfying ci, di ∈ E and
∑n

i=1(di−ci)| < δ.
F is ACG on E if F |E is continuous on E and E can be expressed as
a countable union of sets on each of which F is AC.

Definition 2.4. Let F : [a, b]→ R be measurable and let E ⊂ [a, b]
be measurable. Then F is ACS on E if for each ε > 0 there exist a
positive number η and a choice S on [a, b] such that

∑n
i |F (Ii)| < ε for
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each S− fine partial partition D = {(Ii, ξi)}ni=1 on [a, b] satisfying ξi ∈ E
and

∑n
i=1 |Ii| < η. The function F is ACGS on E if E can be expressed

as a countable union of sets on each of which F is ACS .

Theorem 2.5. ([3]) A function f : [a, b] → R is AP-Henstock inte-
grable on [a, b] if and only if there exists an ACGS function F on [a, b]
such that F ′ap = f almost everywhere on [a, b].

3. The Integration by parts for the AP-Henstock Integral

To prove the integration by parts for the AP-Henstock integral, we
need the following theorem.

Theorem 3.1. Let F and G be ACGS on [a, b]. If F and G are
bounded on [a, b], then FG is ACGS on [a, b].

Proof. Since F is ACGS on [a, b], there exists a sequence of measur-
able sets {An} such that [a, b] = ∪∞i=1An and F is ACS on each An.
Since G is ACGS on [a, b], there exists a sequence of measurable sets
{Bm}∞m=1 such that [a, b] = ∪∞m=1Bm and G is ACS on each Bm. We
have

[a, b] = ∪∞n=1∪∞m=1(An ∩Bm).

We rewrite the sequence {An∩Bm}n,m≥1 as {Ek}k≥1. Then obiously
F and G are ACS on each Ek . Now let us show that FG is ACS on
each Ek. Let | F (t) |≤ M and | G(t) |≤ M for each t ∈ [a, b] and fix k.
Let ε > 0. Since F is ACS on Ek, there exist a positive η1 and a choice
S1 on [a, b] such that

p∑
i=1

| F (Ii) |<
ε

2M

for each S1− fine partial partition {(Ii, ξi)}pi=1 satisfying
∑p

i=1 | Ii |< η1
and ξi ∈ Ek. Since G is ACS on Ek, there exists a positive η2 > 0 and
a choice S2 on [a, b] such that

p∑
i=1

| G(Ji) |<
ε

2M

for each S2− fine partial partition {(Ji, ξi)}pi=1 satisfying
∑p

i=1 | Ii |< η2
and ξi ∈ Ek.

Let S = S1 ∩ S2 and let η = min{η1, η2}. Let D = {([ci, di], ξi}mi=1 be
a S−fine partial partition that satisfying

∑m
i=1(di− ci) < η and ξi ∈ Ek.
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Then we have
m∑
i=1

| F (di)G(di)− F (ci)G(ci) |

≤
m∑
i=1

| F (di)G(di)− F (ci)G(di) | +
m∑
i=1

| F (ci)G(di)− F (ci)G(ci) |

≤
m∑
i=1

| G(di) || F (di)− F (ci) | +
m∑
i=1

| F (ci) || G(di)−G(ci) |

≤M
m∑
i=1

| F (di)− F (ci) | +M |
m∑
i=1

| G(di)−G(ci) |

< M
ε

2M
+M

ε

2M
= ε.

Hence, FG is ACS on Ek.

Theorem 3.2. Let f : [a, b]→ R be AP-Henstock integrable on [a, b]
and let F (x) = (AH)

∫ x
a f for each x ∈ [a, b]. If F is bounded on [a, b]

and G is bounded ACGS on [a, b], then fG is AP-Henstock integrable
on [a, b] and

(AH)

∫ b

a
fG = F (b)G(b)− (AH)

∫ b

a
FG′.

Proof. Since F and G are ACGS on [a, b], FG is ACGS on [a, b] by
Theorem 3.1. Hence, (FG)′ap is AP-Henstock integrable on [a, b]. Since
F is bounded and measurable on [a, b]. F is Lebesgue integrable on [a, b]
and (FG)′ap is AP-Henstock integrable on [a, b]. Since fG = (FG)′ap −
FG′ap almost everywhere on [a, b], fG is AP-Henstock integrable on [a, b]
and

(AH)

∫ b

a
fG = (AH)

∫ b

a
(FG)′ap − (AH)

∫ b

a
FG′ap

= F (b)G(b)− (AH)

∫ b

a
FG′ap.
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Corollary 3.3. Let f : [a, b] → R be AP-Henstock integrable on
[a, b] and let F (x) = (AH)

∫ x
a f for each x ∈ [a, b]. If F is bounded on

[a, b] and G is AC on [a, b], then fG is AP-Henstock integrable on [a, b]
and

(AH)

∫ b

a
fG = F (b)G(b)− (L)

∫ b

a
F ′dG.

Proof. By theorem 3.2, the function fG is AP-Henstock integrable
on [a, b]. Since F is bounded and measurable on [a, b], F is Lebesgue in-
tegrable on [a, b]. Also, since G is AC on [a, b], G′ is Lebesgue integrable

on [a, b] and (L)
∫ b
a FG

′ = (L)
∫ b
a FdG. Hence, we have

(AH)

∫ b

a
fG = F (b)G(b)− (L)

∫ b

a
FdG.

Theorem 3.4. Let f : [a, b]→ R be AP-Henstock integrable on [a, b]
and let F (x) = (AH)

∫ x
a f for each x ∈ [a, b]. If F is bounded on [a, b]

and G is ACGS of bounded variation on [a, b], then fG is AP-Henstock
integrable on [a, b] and

(AH)

∫ b

a
fG = F (b)G(b)− (L)

∫ b

a
FG′.

Proof. Since F is bounded ACGS on [a, b] and G is bounded variation
ACGS on [a, b], FG is ACGS on [a, b] by Theorem 3.1. Hence (FG)′ap is
AP-Henstock integrable on [a, b]. Also, since F is bounded measurable
on [a, b] and G′ is Lebesgue integrable on [a, b], FG′ is Lebesgue inte-
grable on [a, b]. Since fG = (FG)′ap − FG′ almost everywhere on [a, b],
fG is AP-Henstock integrable on [a, b] and

(AH)

∫ b

a
fG = F (b)G(b)− (L)

∫ b

a
FG′.
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