THE m-STEP COMPETITION GRAPHS OF d-PARTIAL ORDERS

Jihoon Choi*

Abstract

The notion of m-step competition graph was introduced by Cho et al. in 2000 as an interesting variation of competition graph. In this paper, we study the m-step competition graphs of d-partial orders, which generalizes the results obtained by Park et al. in 2011 and Choi et al. in 2018.

1. Introduction

In this paper, all the graphs and digraphs are assumed to be finite and simple unless otherwise stated. We write $u \rightarrow v$ for an $\operatorname{arc}(u, v)$ in a digraph.

The competition graph of a given digraph D, denoted by $C(D)$, is defined to be the graph such that $V(C(D))=V(D)$ and $E(C(D))=\{x y \mid$ $(x, z),(y, z) \in A(D)$ for some $z \in A(D)\}$. Since its introduction, a lot of variations of competition graph have been introduced and studied (see $[1,2,8,9,10,13]$ for reference). One example is the m-step competition graph, which was introduced by Cho et al. [4]. Let D be a digraph and m be a positive integer. A vertex y is called an m-step prey of a vertex x in D if there is a directed walk from x to y of length m. The m-step competition graph of D, denoted by $C^{m}(D)$, is defined to be the graph such that $V\left(C^{m}(D)\right)=V(D)$ and $x y$ is an edge in $C^{m}(D)$ if and only if there exists an m-step common prey of u and v in D. The readers may refer to $[4,9,11]$ for the structural properties of m-step competition graphs, $[1,8,13]$ for the characterizations of paths and cycles which are

[^0]realizable as the m-step competition graph, and $[2,7,10,12]$ for the matrix sequence $\left\{C^{m}(D)\right\}_{m=1}^{\infty}$.

Let d be a positive integer. For $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right), y=\left(y_{1}, y_{2}, \ldots, y_{d}\right)$ $\in \mathbb{R}^{d}$, we write $x \prec y$ if $x_{i}<y_{i}$ for each $i=1, \ldots, d$. If $x \prec y$ or $y \prec x$, then we say that x and y are comparable in \mathbb{R}^{d}. Otherwise, we say that x and y are incomparable in \mathbb{R}^{d}. For a finite subset S of \mathbb{R}^{d}, let D_{S} denote the digraph defined by $V\left(D_{S}\right)=S$ and $A\left(D_{S}\right)=\{(x, v) \mid v, x \in S, v \prec x\}$. A digraph is called a d-partial order if $D=D_{S}$ for a finite subset S of \mathbb{R}^{d}. It is clear that every d-partial order is transitive, and therefore acyclic.

A 2-partial order is called a doubly partial order, which was introduced by Cho and Kim [3]. They proved that the interval graphs are exactly the graphs with "partial order competition dimensions" at most two, by showing that every competition graph of a doubly partial order is an interval graph, and that every interval graph together with some additional isolated vertices is the competition graph of a doubly partial order. Park el al. [11] characterized the graphs which can be represented as the m-step competition graphs of doubly partial orders by adding sufficiently many isolated vertices. In this paper, we study the m-step competition graphs of d-partial orders, which generalizes the results obtained by Park et al.

2. A characterization of the m-step competition graphs of d-partial orders

Let 1 denote the all-one vector $(1,1, \ldots, 1)$ in \mathbb{R}^{d}. For $\mathbf{x} \in \mathbb{R}^{d}$, the dot product of \mathbf{x} and $\mathbf{1}$ is defined by $\mathbf{x} \cdot \mathbf{1}=\sum_{i=1}^{d} x_{i}$. Let

$$
\mathcal{H}^{d}=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid \mathbf{x} \cdot \mathbf{1}=0\right\}, \quad \mathcal{H}_{+}^{d}:=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid \mathbf{x} \cdot \mathbf{1}>0\right\}
$$

For a point \mathbf{p} in \mathcal{H}_{+}^{d}, let $\triangle^{d-1}(\mathbf{p})$ be the intersection of the closed cone $\left\{\mathbf{x} \in \mathbb{R}^{d} \mid x_{i} \leq p_{i}(i=1, \ldots, d)\right\}$ and the hyperplane \mathcal{H}^{d}. For a subset A of $\mathbb{R}^{d}, \operatorname{int}(A)$ denotes the interior of A with respect toe the standard topology in \mathbb{R}^{d}. Then the following are true.

Lemma $2.1([6])$. For $\mathbf{p} \in \mathcal{H}_{+}^{d}$, the set $\triangle^{d-1}(\mathbf{p})$ is a regular $(d-1)$ simplex.

Proposition $2.2([6])$. For $\mathbf{p}, \mathbf{q} \in \mathcal{H}_{+}^{d}, \triangle^{d-1}(\mathbf{p}) \subset \operatorname{int}\left(\triangle^{d-1}(\mathbf{q})\right)$ if and only if $\mathbf{p} \prec \mathbf{q}$.

Two geometric figures in \mathbb{R}^{d} are said to be homothetic if one can be mapped into the other by dilation and translation. Then the following is true.

Proposition $2.3([6])$. For $\mathbf{p}, \mathbf{q} \in \mathcal{H}_{+}^{d}, \triangle^{d-1}(\mathbf{p})$ and $\triangle^{d-1}(\mathbf{q})$ are homothetic.

Let \mathcal{F}^{d-1} denote the set of regular $(d-1)$-simplices in \mathbb{R}^{d} contained in \mathcal{H}^{d} and homothetic to $\triangle^{d-1}(\mathbf{1})$. Then there is a one to one correspondence between \mathcal{H}_{+}^{d} and \mathcal{F}_{d-1}.

Corollary 2.4 ([6]). For each integer $d \geq 2$, the function \triangle^{d-1} : $\mathcal{H}_{+}^{d} \rightarrow \mathcal{F}^{d-1}$ mapping \mathbf{p} to $\triangle^{d-1}(\mathbf{p})$ is bijective.

As an analogue of Theorem 2.9 in [6], we characterize the m-step competition graph of a d-partial order as follows.

Theorem 2.5. Let m and d be positive integers. Then a graph G is the m-step competition graph of a d-partial order if and only if there exist a subset \mathcal{F} of \mathcal{F}^{d-1} and a bijection $f: V(G) \rightarrow \mathcal{F}$ such that
(\star) two vertices v and w are adjacent in G if and only if there exist two sequences $\left(v_{0}, v_{1}, \ldots, v_{m}\right)$ and $\left(w_{0}, w_{1}, \ldots, w_{m}\right)$ on $V(G)$ such that $v_{0}=v, w_{0}=w, v_{m}=w_{m}$, and for each $i=1,2, \ldots, m$, $f\left(v_{i}\right) \subset \operatorname{int}\left(f\left(v_{i-1}\right)\right)$ and $f\left(w_{i}\right) \subset \operatorname{int}\left(f\left(w_{i-1}\right)\right)$.

Proof. (\Rightarrow) Assume that G is the m-step competition graph of some d-partial order D. For a positive real number k which is large enough, we translate all the vertices of D by $T: v \mapsto v+k \mathbf{1}$ so that we may assume $V(D) \subset \mathcal{H}_{+}^{d}$. Let $\mathcal{F}=\left\{\triangle^{d-1}(v) \mid v \in V(D)\right\}$. Then $\mathcal{F} \subset \mathcal{F}^{d-1}$. Let $f: V(G) \rightarrow \mathcal{F}$ be the function defined by $f(v)=\triangle^{d-1}(v)$. Then f is a bijection by Corollary 2.4. The property (\star) immediately follows from the definition of m-step competition graph and Proposition 2.2.
(\Leftarrow) Assume there exist $\mathcal{F} \subset \mathcal{F}^{d-1}$ and a bijection $f: V(G) \rightarrow \mathcal{F}$ such that the property (\star) is true. By Corollary 2.4, each element in \mathcal{F} can be written in the form of $\triangle^{d-1}(\mathbf{p})$ for some $\mathbf{p} \in \mathcal{H}_{+}^{d}$. Take two vertices v and w in G. Then, by the property (\star) and Proposition 2.2, v and w are adjacent in G if and only if v and w have an m-step common prey in the d-partial order D_{S} where $S=\left\{\mathbf{p} \in \mathbb{R}^{d} \mid \triangle^{d-1}(\mathbf{p}) \in \mathcal{F}\right\}$. Thus $G=C^{m}\left(D_{S}\right)$.

3. Partial order m-step competition dimensions of graphs

We denote by $\mathbb{Z}_{>0}$ and $\mathbb{Z}_{\geq 0}$ the set of positive integers and the set of nonnegative integers, respectively. In addition, I_{k} denotes the set of k isolated vertices for each $k \in \mathbb{Z}_{\geq 0}$.

To study the competition graphs of d-partial orders, Choi et al. [6] introduced the notion of the partial order competition dimension of a graph.

Definition 3.1 ([6]). The partial order competition dimension of a graph G, denoted by $\operatorname{dim}_{\text {poc }}(G)$, is defined to be the smallest positive integer d such that G together with k additional isolated vertices is the competition graph of some d-partial order D for some $k \in \mathbb{Z}_{\geq 0}$, i.e.,

$$
\operatorname{dim}_{\mathrm{poc}}(G):=\min \left\{d \in \mathbb{Z}_{>0} \mid \exists k \in \mathbb{Z}_{\geq 0}, \exists S \subset \mathbb{R}^{d} \text { s.t. } G \cup I_{k}=C\left(D_{S}\right)\right\}
$$

In this section, we introduce the notion of partial order m-step competition dimension of a graph to generalize that of partial order competition dimension and investigate basic properties of m-step competition graphs of d-partial orders in terms of it.

Lemma 3.2. For a transitive digraph D and a positive integer m, every m-step prey of x in D is a k-step prey of x for each $k=1, \ldots, m$.

Proof. It easily follows from the transitivity of D.
Lemma 3.3. Every d-partial order is isomorphic to a $(d+1)$-partial order.

Proof. We mimic the proof of Proposition 3.1 in [6]. Let D be a d-partial order. For each $\mathbf{v}=\left(v_{1}, \ldots, v_{d}\right) \in V(D) \subset \mathbb{R}^{d}$, we define $\tilde{\mathbf{v}} \in \mathbb{R}^{d+1}$ by $\tilde{\mathbf{v}}=\left(v_{1}, \ldots, v_{d}, \sum_{i=1}^{d} v_{i}\right)$. Let $\tilde{V}=\{\tilde{\mathbf{v}} \mid \mathbf{v} \in V(D)\}$. Then $D_{\tilde{V}}$ is a $(d+1)$-partial order. Take $\mathbf{v}=\left(v_{1}, \ldots, v_{d}\right)$ and $\mathbf{w}=\left(w_{1}, \ldots, w_{d}\right)$ in D. Then

$$
\begin{aligned}
\tilde{\mathbf{v}} \prec \tilde{\mathbf{w}} & \Leftrightarrow v_{i}<w_{i}(i=1, \ldots, d) \text { and } \sum_{i=1}^{d} v_{i}<\sum_{i=1}^{d} w_{i} \\
& \Leftrightarrow v_{i}<w_{i}(i=1, \ldots, d) \\
& \Leftrightarrow \mathbf{v} \prec \mathbf{w},
\end{aligned}
$$

and therefore D is isomorphic to \tilde{D}.
The following proposition is an immediate consequence of Lemma 3.3.

Proposition 3.4 ([6]). For positive integers m and d, the m-step competition graph of a d-partial order is (isomorphic to) the m-step competition graph of a $(d+1)$-partial order.

Let G be a graph. A clique of G is a vertex subset in which all the vertices are pairwise adjacent in G. For a clique K and an edge e of G, we say that K covers e if K contains the two end vertices of e. An edge clique cover of G is a family of cliques of G which cover all the edges of G. The minimum cardinality of an edge clique cover of G is called the edge clique cover number of G and denoted by $\theta_{e}(G)$.

ThEOREM 3.5. Let G be a graph and m be a positive integer. Then there exist a positive integer d and a nonnegative integer k such that G together with k additional isolated vertices is the m-step competition graph of some d-partial order.

Proof. Let v_{1}, \ldots, v_{n} be the vertices of D. We define a map ϕ : $V(D) \rightarrow \mathbb{R}^{n}$ so that the j th coordinate of $\phi\left(v_{i}\right)(i=1, \ldots, n)$ is given by

$$
\phi\left(v_{i}\right)_{j}= \begin{cases}2 & \text { if } j=i \\ 4 & \text { if } j \neq i\end{cases}
$$

Let $\theta=\theta_{e}(G)$ and $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{\theta}\right\}$ be an edge clique cover of G consisting of maximal cliques. For each $t \in\{1,2, \ldots, m\}$, we define a map $\psi_{t}: \mathcal{C} \rightarrow \mathbb{R}^{n}$ so that the j th coordinate of $\psi_{t}\left(C_{l}\right)(l=1, \ldots, \theta)$ is given by

$$
\left(\psi_{t}\left(C_{l}\right)\right)_{j}= \begin{cases}1-\frac{t}{m+1} & \text { if } v_{j} \in C_{l} \\ 3-\frac{t}{m+1} & \text { if } v_{j} \notin C_{l}\end{cases}
$$

Let $V=\left\{\phi\left(v_{i}\right) \mid i=1,2, \ldots, n\right\} \cup\left\{\psi_{t}\left(C_{l}\right) \mid t=1,2, \ldots, m, l=\right.$ $1,2, \ldots, \theta\} \subseteq \mathbb{R}^{n}$. Then, in the d-partial order D_{V}, it easily be checked that the vertex $\psi_{t}\left(C_{l}\right)$ has no m-step prey whereas the set m-step preys of the vertex $\phi\left(v_{i}\right)$ is $\left\{\psi_{m}\left(C_{l}\right) \mid v_{i} \in C_{l}\right\}$. Thus $C^{m}(D)=G \cup I_{m \theta}$. We take $d=n$ and $k=m \theta$ to complete the proof.

By Proposition 3.4 and Theorem 3.5, we can define the notion the partial order m-step competition dimension of a graph.

Definition 3.6. For a graph G and a positive integer m, the partial order m-step competition dimension $\operatorname{dim}_{\text {poc }}(G ; m)$ of G is defined as the smallest positive integer d such that G together with k additional
isolated vertices is the m-step competition graph of some d-partial order and some nonnegative integer k, i.e.,
$\operatorname{dim}_{\mathrm{poc}}(G ; m)=\min \left\{d \in \mathbb{Z}_{>0} \mid \exists k \in \mathbb{Z}_{\geq 0}, \exists S \subset \mathbb{R}^{d}\right.$, s.t. $\left.G \cup I_{k}=C^{m}\left(D_{S}\right)\right\}$.
For every graph G, it easily follows from the definition that $\operatorname{dim}_{\mathrm{poc}}(G ; 1)=$ $\operatorname{dim}_{\text {poc }}(G)$.

Proposition 3.7. For a graph G and a positive integer $m, \operatorname{dim}_{\mathrm{poc}}(G ; m) \leq$ $|V(G)|$.

Proof. It follows from the construction of D_{V} in the proof of Theorem 3.5.

Choi et al. [6] characterized the graphs having partial order competition dimensions 1 or 2 , and then presented some graphs having partial order competition dimensions at most three.

Proposition 3.8 ([6]). For a graph G, $\operatorname{dim}_{\text {poc }}(G)=1$ if and only if $G=K_{t}$ or $G=K_{t} \cup K_{1}$ for some positive integer t.

Proposition 3.9 ([6]). For a graph $G, \operatorname{dim}_{\text {poc }}(G)=2$ if and only if G is an interval graph which is neither K_{t} nor $K_{t} \cup K_{1}$ for any positive integer t.

It is natural to ask which graphs have small partial order m-step competition dimensions. It is easy to characterize graphs G with $\operatorname{dim}_{\text {poc }}(G ; m)$ ≤ 1 for a given positive integer m.

Proposition 3.10. Let G be a graph and m be a positive integer m. Then $\operatorname{dim}_{\mathrm{poc}}(G ; m)=1$ if and only if $G=K_{t} \cup I_{s}$ for some nonnegative integers t and s with $t \geq 1$ and $s \leq m$.

Proof. (\Rightarrow) Assume $\operatorname{dim}_{\mathrm{poc}}(G ; m)=1$. Then $G \cup I_{k}=C^{m}(D)$ for some 1-partial order D and $k \in \mathbb{Z}_{\geq 0}$. Let v_{1}, \ldots, v_{n} be the vertices of D. We may assume that $v_{1}<v_{2}<\cdots<v_{n}$ in \mathbb{R}. Then, the vertices $v_{1}, v_{2}, \ldots, v_{m}$ does not have an m-step prey in D, so they are isolated in $C^{m}(D)$. In addition, the vertices $v_{m+1}, v_{m+2}, \ldots, v_{n}$ has v_{1} as an m-step prey, so they form a clique in $C^{m}(D)$. Therefore, $C^{m}(D)$ consists of a clique together with some isolated vertices.
(\Leftarrow) Assume $G=K_{t} \cup I_{s}$ for some $t \geq 1$ and $s \leq m$. We denote the vertices in K_{t} by x_{1}, \ldots, x_{t} and the vertices in I_{s} by y_{1}, \ldots, y_{s} if $s \neq 0$. We assign a coordinate in \mathbb{R} to each vertex of G by $y_{i}=i$ for $i=1, \ldots, s$ and $x_{j}=j+s$ for $j=1, \ldots, t$. Let J be a set of $m-s$ negative real numbers. Then the set $V(G) \cup J \subset \mathbb{R}$ induces a 1-partial order whose m-step competition graph is $G \cup I_{m-s}$. Therefore $\operatorname{dim}_{\mathrm{poc}}(G ; m) \leq 1$.

Park et al. [11] studied the m-step competition graphs of 2-partial orders and obtained the following results.

Theorem 3.11 ([11]). For a positive integer m, the m-step competition graph of a 2-partial order is an interval graph.

Theorem 3.12 ([11]). For a positive integer m, an interval graph together with some additional vertices is the m-step competition graph of a 2-partial order.

We can restated the results of Park et al. [11] in terms of $\operatorname{dim}_{\mathrm{poc}}(G ; m)$ as follows:

Proposition 3.13. For a graph G and a positive integer $m, \operatorname{dim}_{\text {poc }}(G ; m)$ ≤ 2 if and only if G is an interval graph.

Proof. (\Rightarrow) Assume $\operatorname{dim}_{\text {poc }}(G ; m) \leq 2$. Then $G \cup I_{k}=C^{m}(D)$ for some 2-partial order D and $k \in \mathbb{Z}_{\geq 0}$. By Theorem 3.11, $G \cup I_{k}$ is an interval graph and so is G.
(\Leftarrow) It immediately follows from Theorem 3.12.
The following proposition tells us that deleting isolated vertices from a graph does not increase the partial order m-step competition dimension.

Proposition 3.14. For a graph G and positive integers k and m, $\operatorname{dim}_{\mathrm{poc}}(G ; m) \leq \operatorname{dim}_{\mathrm{poc}}\left(G \cup I_{k} ; m\right)$.

Proof. Let $d=\operatorname{dim}_{\mathrm{poc}}\left(G \cup I_{k} ; m\right)$. Then $\left(G \cup I_{k}\right) \cup I_{s}=C^{m}(D)$ for some d-partial order D and $s \in \mathbb{Z}_{\geq 0}$. Since $\left(G \cup I_{k}\right) \cup I_{s}=G \cup I_{k+s}$, $\operatorname{dim}_{\text {poc }}(G ; m) \leq d$.

As a matter of fact, the equality in Proposition 3.14 mostly holds except for some specific graphs.

Proposition 3.15. For a graph G and positive integers m and k, $\operatorname{dim}_{\mathrm{poc}}\left(G \cup I_{k} ; m\right)>\operatorname{dim}_{\mathrm{poc}}(G ; m)$ if and only if $G=K_{t} \cup I_{s}$ for some nonnegative integers t and s with $t \geq 1$ and $m-k<s \leq m$.

Proof. (\Leftarrow) Suppose $G=K_{t} \cup I_{s}$ for some nonnegative integers t and s with $t \geq 1$ and $m-k<s \leq m$. Since $G \cup I_{k}=K_{t} \cup I_{s+k}$ and $s+k>m \geq$ s, Proposition 3.10 tells us that $\operatorname{dim}_{\mathrm{poc}}(G ; m)=1<\operatorname{dim}_{\mathrm{poc}}\left(G \cup I_{k} ; m\right)$.
(\Rightarrow) Let $d=\operatorname{dim}_{\mathrm{poc}}(G ; m)$. Then $G \cup I_{s}=C^{m}(D)$ for some d-partial order D and $s \in \mathbb{Z}_{\geq 0}$. Suppose, to the contrary, that $d \geq 2$. Let

$$
\begin{aligned}
\alpha & =\max \left\{v_{1} \mid\left(v_{1}, v_{2}, \ldots, v_{d}\right) \in V(D)\right\} \\
\beta & =\min \left\{v_{2} \mid\left(v_{1}, v_{2}, \ldots, v_{d}\right) \in V(D)\right\}
\end{aligned}
$$

Let $z_{i}=(\alpha+i, \beta-i, 0, \ldots, 0) \in \mathbb{R}^{d}$ for each $i=1, \ldots, k$ and let $S=V(D) \cup\left\{z_{1}, \ldots, z_{k}\right\}$. Then D_{S} is a d-partial order. By definition, no vertex in $\left\{z_{1}, \ldots, z_{k}\right\}$ is comparable with any vertex of D_{S} in \mathbb{R}^{d}. Therefore $C^{m}\left(D_{S}\right)=C^{m}(D) \cup I_{k}=\left(G \cup I_{s}\right) \cup I_{k}=\left(G \cup I_{k}\right) \cup I_{s}$. Thus $\operatorname{dim}_{\mathrm{poc}}\left(G \cup I_{k} ; m\right) \leq d$, which contradicts the hypothesis that $\operatorname{dim}_{\text {poc }}\left(G \cup I_{k} ; m\right)>\operatorname{dim}_{\text {poc }}(G ; m)$. Hence $d=1$. By Proposition 3.10, $G=K_{t} \cup I_{s}$ for some nonnegative integers t and s with $t \geq 1$ and $s \leq m$. Then $G \cup I_{k}=\left(K_{t} \cup I_{s}\right) \cup I_{k}=K_{t} \cup I_{s+k}$. If $s+k \leq m$, then $\operatorname{dim}_{\mathrm{poc}}\left(G \cup I_{k} ; m\right)=1$ by Proposition 3.10 and this contradicts the assumption that $\operatorname{dim}_{\mathrm{poc}}\left(G \cup I_{k} ; m\right)>\operatorname{dim}_{\mathrm{poc}}(G ; m)=1$. Therefore $s+k>m$ or $m-k<s$.
4. $\operatorname{dim}_{\mathrm{poc}}(G ; m)$ in the aspect of $\operatorname{dim}_{\mathrm{poc}}(G)$

In this section, we will investigate the behavior of $\operatorname{dim}_{\mathrm{poc}}(G ; m)$ when m varies and then present a relation between $\operatorname{dim}_{\mathrm{poc}}(G ; m)$ and $\operatorname{dim}_{\mathrm{poc}}(G)$.

Definition 4.1. A d-partial order D is said to satisfy the distinct coordinate property ($D C$-property for short) provided that, for each $i=$ $1, \ldots, d$, the i th coordinates of the vertices of D are all distinct.

For example, the 3-partial order on the three vertices $(1,2,3),(2,3,4)$, $(3,4,5)$ satisfies the DC-property while the 3 -partial order on the three vertices $(1,2,3),(2,3,4),(1,4,5)$ does not satisfies the DC-property.

For a d-partial order D and an ordered pair $(i, k) \in\{1, \ldots, d\} \times \mathbb{R}$, we partition $V(D)$ into three disjoint subsets

$$
\begin{aligned}
V_{i, k}(D) & =\left\{\left(a_{1}, \ldots, a_{d}\right) \in V(D) \mid a_{i}=k\right\}, \\
V_{i, k}^{+}(D) & =\left\{\left(a_{1}, \ldots, a_{d}\right) \in V(D) \mid a_{i}>k\right\}, \\
V_{i, k}^{-}(D) & =\left\{\left(a_{1}, \ldots, a_{d}\right) \in V(D) \mid a_{i}<k\right\},
\end{aligned}
$$

and let $\Gamma(D)=\left\{(i, k) \in\{1, \ldots, d\} \times \mathbb{R}| | V_{i, k}(D) \mid \geq 2\right\}$. Clearly, a d-partial order D satisfies the DC-property if and only if $\Gamma(D)=\emptyset$.

Proposition 4.2. For a positive integer d, every d-partial order is isomorphic to a d-partial order satisfying the DC-property.

Proof. Let D be a d-partial order. There is nothing to prove if $\Gamma(D)=$ \emptyset. Assume $\Gamma(D) \neq \emptyset$. Take $(i, k) \in \Gamma(D)$. Let $V_{i, k}=\left\{v_{1}, \ldots, v_{l}\right\}(l \geq 2)$ and $V_{i, k}^{*}=\left\{v_{1}^{*}, \ldots, v_{\ell}^{*}\right\}$ where v_{j}^{*} is the point in \mathbb{R}^{d-1} obtained from $v_{j} \in \mathbb{R}^{d}$ by deleting its i th coordinate. Then $V_{i, k}^{*}$ induces a $(d-1)$ partial order D^{*}, i.e., $D^{*}=D_{V_{i, k}^{*}}$. Since D^{*} is acyclic, we may assume
that the vertices in $V_{i, k}$ are labeled so that $v_{j}^{*} \prec v_{j^{\prime}}^{*}$ in D^{*} only if $j<$ j^{\prime}. Now we construct a new d-partial order $D_{i, k}$ with the vertex set $\left\{\phi_{i, k}(v) \in \mathbb{R}^{d} \mid v \in V(D)\right\}$ so that

$$
\phi_{i, k}(v)= \begin{cases}v & \text { if } v \in V_{i, k}^{-} \\ v+j e_{i}, & \text { if } v \in V_{i, k} \text { and } v=v_{j} \\ v+l e_{i} & \text { if } v \in V_{i, k}^{+}\end{cases}
$$

where e_{i} denotes the i th standard basis vector in \mathbb{R}^{d}. By the way of construction, $D_{i, k}$ is isomorphic to D and $\left|\Gamma\left(D_{i, k}\right)\right|=|\Gamma(D)|-1$. If $\Gamma\left(D_{i, k}\right)=\emptyset$, then $D_{i, k}$ is a desired d-partial order. Otherwise, we repeat this process until we obtain a d-partial order D^{\prime} which is isomorphic to D and satisfies $\Gamma\left(D^{\prime}\right)=\emptyset$.

The length of a directed path P is the number of arcs in P, and denoted by $\ell(P)$.

Lemma 4.3. Let G be the m-step competition graph of a d-partial D for some positive integers m and d. If two vertices u and v are adjacent in G, then they have an m-step common prey which has outdegree 0 in D.

Proof. Take two adjacent vertices u and v in G. By the definition $C^{m}(D), u$ and v have an m-step common prey, say z, in D. Take a longest directed path P starting from z in D and let w be its terminus. It is clear that w has outdegree 0 in D and w is an $(m+\ell(P))$-step common prey of u and v. Then w is an m-step common prey of u and v by Lemma 3.2.

The following theorem is one of our main results.
Theorem 4.4. For a graph G and a positive integer $m, \operatorname{dim}_{\mathrm{poc}}(G ; m) \geq$ $\operatorname{dim}_{\text {poc }}(G ; m+1)$.

Proof. Let $d=\operatorname{dim}_{\text {poc }}(G ; m)$. Then $G \cup I_{k}=C^{m}(D)$ for some d partial order D and $k \in \mathbb{Z}_{\geq 0}$. By Proposition 4.2, we may assume D satisfies the DC-property. Then
$\delta:=\min _{i}\left\{\left|a_{i}-b_{i}\right|:\left(a_{1}, \ldots, a_{d}\right)\right.$ and $\left(b_{1}, \ldots, b_{d}\right)$ are distinct vertices of $\left.D\right\}$ is a positive real number. Let Y be the set of vertices of D with outdegree 0 . Since D is acyclic, $Y \neq \emptyset$. For each $y \in Y$, let $\phi(y)=y-\frac{\delta}{2}(1, \ldots, 1) \in$ \mathbb{R}^{d} and $Z=\{\phi(y) \mid y \in Y\}$. Then the set $S:=V(D) \cup Z$ induces the d-partial order D_{S}. By the transitivity of D and by the choice of δ, it is easy to see that $N_{D_{S}}^{-}(\phi(y))=\{y\} \cup N_{D}^{-}(y)$ and $N_{D_{S}}^{+}(\phi(y))=\emptyset$ for each
$y \in Y$. Furthermore, the set of vertices of outdegree 0 in D_{S} is Z and the set of vertices of outdegree 1 in D_{S} is Y.

We claim that $C^{m}(D)$ and $C^{m+1}\left(D_{S}\right)$ have the same edge set. Take an edge $u v$ in $C^{m}(D)$. By Lemma 4.3, u and v have a common m-step prey y which has outdegree 0 in D. Since $y \in Y, y \rightarrow \phi(y)$ in D_{S} and so $\phi(y)$ is an $(m+1)$-step common prey of u and v in D_{S}. Thus $u v$ is an edge in $C^{m+1}\left(D_{S}\right)$.

Conversely, take an edge $u v$ in $C^{m+1}\left(D_{S}\right)$. By Lemma 4.3, u and v have an $(m+1)$-step common prey z which has outdegree 0 in D_{S}. Then there exist two directed paths

$$
P_{u}: u=u_{0} \rightarrow u_{1} \rightarrow \cdots \rightarrow u_{m-1} \rightarrow u_{m} \rightarrow u_{m+1}=z
$$

and

$$
P_{v}: v=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{m-1} \rightarrow v_{m} \rightarrow v_{m+1}=z
$$

of length $m+1$ in D_{S}. Since Z is the set of vertices of D_{S} with outdegree $0, z \in Z$ and so $z=\phi(y)$ for some $y \in Y$. Since D_{S} is transitive and $u_{m-1} \rightarrow u_{m} \rightarrow \phi(y)$ in D_{S}, we have $u_{m-1} \rightarrow \phi(y)$. Then $u_{m-1} \in$ $N_{D_{S}}^{-}(\phi(y))=\{y\} \cup N_{D}^{-}(y)$. However, $u_{m-1} \neq y$, for otherwise u_{m-1} has outdegree 1 in D_{S}, which is impossible as $u_{m-1} \rightarrow u_{m}$ and $u_{m-1} \rightarrow$ $\phi(y)$. Therefore $u_{m-1} \in N_{D}^{-}(y)$. Thus the sequence $P_{u}^{\prime}: u=u_{0} \rightarrow$ $u_{1} \rightarrow \cdots \rightarrow u_{m-1} \rightarrow y$ is a directed path in D of length m. Similarly, $P_{v}^{\prime}: v=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{m-1} \rightarrow y$ is a directed path in D of length m. Then y is an m-step common prey of u and v in D, and therefore $u v$ is an edge in $C^{m}(D)$.

We have shown that $C^{m}(D)$ and $C^{m+1}\left(D_{S}\right)$ have the same edge set. Since $C^{m}(D)=G \cup I_{k}$, we have $C^{m+1}\left(D_{S}\right)=\left(G \cup I_{k}\right) \cup I_{\ell}=G \cup I_{k+\ell}$ where $\ell=|Z|$. Hence $\operatorname{dim}_{\text {poc }}(G ; m+1) \leq d$.

By applying induction on m, we have the following corollary.
Corollary 4.5. For every graph G and every positive integer m, $\operatorname{dim}_{\mathrm{poc}}(G) \geq \operatorname{dim}_{\mathrm{poc}}(G ; m)$.

5. Partial order competition exponents of graphs

In this section, we introduce an analogue concept of exponent for a graph in the aspect of partial order m-step competition dimension.

It is well known that, for a $\{0,1\}$-matrix A with Boolean operation, the matrix sequence $\left\{A^{m}\right\}_{m=1}^{\infty}$ converges to the all-one matrix J if and only if A is primitive. The smallest positive integer M satisfying $A^{m}=J$ for all $m \geq M$ is called the exponent of A.

Let G be a graph. Then the integer-valued sequence $\left\{\operatorname{dim}_{\mathrm{poc}}(G ; m)\right\}_{m=1}^{\infty}$ is bounded by Proposition 3.7 and decreasing by Theorem 4.4. Therefore there exists a positive integer M such that $\operatorname{dim}_{\mathrm{poc}}(G ; m)$ is constant for any $m \geq M$. We call the smallest such M the partial order competition exponent of G and denote it by $\exp _{\mathrm{poc}}(G)$.

Proposition 5.1. For any graph G with $\operatorname{dim}_{\mathrm{poc}}(G ; 1)=1, \exp _{\mathrm{poc}}(G)=$ 1.

Proof. Since $\left\{\operatorname{dim}_{\text {poc }}(G ; m)\right\}_{m=1}^{\infty}$ is decreasing, $1=\operatorname{dim}_{\text {poc }}(G ; 1) \geq$ $\operatorname{dim}_{\mathrm{poc}}(G ; 2) \geq \cdots$ and so $\operatorname{dim}_{\mathrm{poc}}(G ; m)=1$ for any $m \in \mathbb{Z}_{>0}$. Therefore $\exp _{\text {poc }}(G)=1$.

Proposition 5.2. For any positive integer M, there exists a graph G such that $\operatorname{dim}_{\mathrm{poc}}(G ; 1)=2$ and $\exp _{\mathrm{poc}}(G)=M$.

Proof. Let G be an interval graph which is not of the form $K_{t} \cup I_{s}$ for any $t \in \mathbb{Z}_{>0}$ and $s \in \mathbb{Z}_{\geq 0}$. Then $\operatorname{dim}_{\text {poc }}(G ; m)=2$ for any $m \in \mathbb{Z}_{>0}$ by Propositions 3.10 and 3.13. Therefore $\exp _{\mathrm{poc}}(G)=1$.

Take a positive integer $M \geq 2$. Consider $H=K_{t} \cup I_{M}$ where t is an arbitrary positive integer. Then, by Proposition 3.10, $\operatorname{dim}_{\mathrm{poc}}(H ; M-$ $1)=2$ and $\operatorname{dim}_{\mathrm{poc}}(H ; M)=1$. Therefore $\exp _{\mathrm{poc}}(H)=M$.

Proposition 5.3. For any graph G with $\operatorname{dim}_{\mathrm{poc}}(G ; 1)=3, \exp _{\mathrm{poc}}(G)=$ 1.

Proof. Since $\operatorname{dim}_{\text {poc }}(G ; 1)=3>2, G$ is not an interval graph as shown by As shown by Cho and $\operatorname{Kim}[3]$. Thus $\operatorname{dim}_{\mathrm{poc}}(G ; m)>2$ for any $m \in \mathbb{Z}_{>0}$ by Proposition 3.13. On the other hand, by Corollary 4.5 , $\operatorname{dim}_{\mathrm{poc}}(G ; m) \leq \operatorname{dim}_{\mathrm{poc}}(G ; 1)=3$ and so $\operatorname{dim}_{\mathrm{poc}}(G ; m)=3$ for any $m \in \mathbb{Z}_{>0}$. Thus $\exp _{\mathrm{poc}}(G)=1$.

6. Acknowledgement

The material in this paper is from the author's Ph.D. thesis [5].

References

[1] E. Belmont, A complete characterization of paths that are m-step competition graphs, Discrete Applied Mathematics, 159 (2011), no. 14, 1381-1390.
[2] H.H. Cho and H.K. Kim, Competition indices of strongly connected digraphs, Bull. Korean Math. Soc., 48 (2011), no. 3, 637-646.
[3] Han Hyuk Cho and S.-R. Kim, A class of acyclic digraphs with interval competition graphs, Discrete Applied Mathematics, 148 (2005), no. 2, 171-180.
[4] H.H. Cho, S.-R. Kim, and Y. Nam, The m-step competition graph of a digraph, Discrete Applied Mathematics, 105 (2000), no. 1, 115-127.
[5] J. Choi, A study on the competition graphs of d-partial orders, PhD thesis, Seoul National University, 2018.
[6] J. Choi, K.S. Kim, S.-R. Kim, J.Y. Lee, and Y. Sano, On the competition graphs of d-partial orders, Discrete Applied Mathematics, 204 (2016), 29-37.
[7] J. Choi and S.-R. Kim, On the matrix sequence for a boolean matrix a whose digraph is linearly connected, Linear Algebra and its Applications, 450 (2014), 56-75.
[8] G.T Helleloid, Connected triangle-free m-step competition graphs, Discrete Applied Mathematics, 145 (2005), no. 3, 376-383.
[9] W. Ho, The m-step, same-step, and any-step competition graphs, Discrete Applied Mathematics, 152 (2005), no. 1, 159-175.
[10] H.K. Kim, Competition indices of tournaments, Bull. Korean Math. Soc, 45 (2008), no. 2, 385-396.
[11] B. Park, J.Y. Lee, and S.-R. Kim, The m-step competition graphs of doubly partial orders, Applied Mathematics Letters, 24 (2011), no. 6, 811-816.
[12] W. Park, B. Park, and S.-R. Kim, A matrix sequence $\{\Gamma$ (Am) $\}=1$ might converge even if the matrix a is not primitive, Linear Algebra and its Applications, 438 (2013), no. 5, 2306-2319.
[13] Y. Zhao and G.J Chang, Note on the m-step competition numbers of paths and cycles, Discrete Applied Mathematics, 157 (2009), no. 8, 1953-1958.

*

Department of Mathematics Education
Cheongju University
Cheongju 28503, Republic of Korea
E-mail: jihoon@cju.ac.kr

[^0]: Received January 07, 2020; Accepted January 17, 2020.
 2010 Mathematics Subject Classification: Primary 05C20; Secondary 05C75.
 Key words and phrases: competition graph, m-step competition graph, d partial order, partial order m-step competition dimension, partial order competition exponent.
 *This work was supported by the research grant of Cheongju University (2018.03.01. - 2020.02.29.)

