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WEIGHT ENUMERATORS OF TWO CLASSES OF

LINEAR CODES

Jaehyun Ahn* and Yeonseok Ka**

Abstract. Recently, linear codes constructed from defining sets
have been studied widely and determined their complete weight
enumerators and weight enumerators. In this paper, we obtain
complete weight enumerators of linear codes and weight enumera-
tors of linear codes. These codes have at most three weight linear
codes. As application, we show that these codes can be used in
secret sharing schemes and authentication codes.

1. Introduction

Throughout this paper, let p be an odd prime and q = pm for a
positive integer m. Let Fp be the finite field with p elements. An [n, k, d]
linear code C over Fp is a k-dimensional subspace of Fnp with minimum
distance d. Let Ai denote the number of codewords with Hamming
weight i in the code C of length n. The weight enumerator of C is defined
by 1 + A1z + A2z

2 + · · · + Anz
n. The sequence (1, A1, A2, · · · , An) is

called the weight distribution of the code C.
Suppose that the elements of Fq are w0 = 0, w1, . . . , wq−1, which are

listed in some fixed order. The composition of a vector v = (v0, v1, . . . , vn−1)
∈ Fnq is defined to be comp(v)=(t0, t1, . . . , tq−1), where each ti = ti(v)
is the number of components vj(0 6 j 6 n − 1) of v that equal to wi.
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Clearly, we have

q−1∑
i=0

ti = n.

Let A(t0, t1 . . . , tq−1) be the number of codewords c ∈ C with
comp(c)=(t0, t1, . . . , tq−1). Then the complete weight enumerator of C
is defined to be the polynomial

WC =
∑
c∈C

zt00 z
t1
1 · · · z

tq−1

q−1

=
∑

(t0,t1,...,tq−1)∈Bn

A(t0, t1, . . . , tq−1)z
t0
0 z

t1
1 · · · z

tq−1

q−1 ,

where Bn = {(t0, t1, . . . , tq−1) : 0 6 ti 6 n,

q−1∑
i=0

ti = n}.

The weight distribution of linear codes is an interesting subject in
coding theory because it estimates the error-correcting capability. But in
general it is not easy to determine the weight distribution of linear codes.
Recently, linear codes with a few weight have been studied [7, 8, 12, 13,
15,16,20,22,27–29] by using exponential sums in some cases. They have
many applications in authentication codes [10, 11], association schemes
[4], strongly regular graphs [5] and secret sharing schemes [6, 14,23].

In this paper, let D = {d1, d2, · · · , dn} ⊆ Fq and Tr denote the trace
function from Fq to Fp. A linear code of length n over Fp is defined by

CD = {(Tr(xd1),Tr(xd2), · · · ,Tr(xdn)) : x ∈ Fq}.(1.1)

The set D is called the defining set of CD. In [14], the authors pre-
sented a class of two-weight and three-weight codes by choosing defin-
ing set D = {x ∈ F∗q : Tr(x2) = 0}. And then the authors in [3]
gave a generalization of the case [14]. In [21], the authors had con-
structed a two or three weight linear codes from weakly regular bent
functions and presented their weight distribution. Moreover, many lin-
ear codes of good parameters are obtained by choosing defining set D
properly [1–3, 14, 17, 19, 24–26]. Motivated by the construction given
in [21,26], we define linear codes CDi for each i ∈ {0, 1}, where

D0 = {x ∈ Fq :Tr(x2) ∈ Sq},(1.2)

D1 = {x ∈ Fq :Tr(x2) ∈ Nsq}.(1.3)
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Here Sq and Nsq denote the set of all squares and non-squares in F∗p,
respectively. And we compute the complete weight enumerators of linear
codes.

As an application, we show that our codes are minimal, which can
be used to construct secret sharing schemes with an interesting access
structure [9, 23]. Also we investigate to construct the systematic au-
thentication codes with new parameters from their the complete weight
enumerators. We shall explain it at the end of this paper in detail.

2. Preliminaries

We introduce some basic notations and results of additive characters
and exponential sums, and then give some lemmas that will be useful to
compute our results.

For any a ∈ Fq, we can define an additive character of the finite field
Fq as follows:

ψa : Fq −→ C∗, ψa(x) = ζTr(ax)p ,

where ζp = e
2π
√
−1
p is a p-th primitive root of unity and Tr denotes the

trace function from Fq onto Fp. For a multiplicative character λ of F∗q ,
we define the Gauss sum of λ over Fq by

G(λ) =
∑
x∈F∗q

λ(x)ψ(x).

Suppose that η is the quadratic character of F∗q and ηp is the quadratic
character of F∗p. For z ∈ F∗p, it is easily checked that

η(z) =

{
1, if m is even,
ηp(z), if m is odd.

Lemma 2.1. [18, Lemma 5.15] Suppose that q = pm for an odd prime
p and m ≥ 1. Then

G(η) = (−1)m−1
√

(p∗)m =

{
(−1)m−1

√
q, if p ≡ 1 (mod 4),

(−1)m−1(
√
−1)m

√
q, if p ≡ 3 (mod 4),

where p∗ =
(−1
p

)
p = (−1)

p−1
2 p.
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Lemma 2.2. [18, Lemma 5.33] If q is odd and f(x) = a2x
2+a1x+a0 ∈

Fq[x] with a2 6= 0, then

∑
x∈Fq

ζTrm(f(x))
p = ζ

Trm(a0−a21(4a2)−1)
p η(a2)G(η).

Lemma 2.3. [14, Lemma 9] For each a ∈ Fp, let

na = |{x ∈ Fq : Tr(x2) = a}|.

Then

n0 =

{
pm−1 − (−1)

p−1
2

m
2 (p− 1)p

m−2
2 , if m is even,

pm−1, if m is odd.

If a 6= 0, then

na =

{
pm−1 + (−1)

p−1
2

m
2 p

m−2
2 , if m is even,

pm−1 + ηp(a)(−1)
p−1
2 (−1)

p−1
2

m+1
2 p

m−1
2 , if m is odd.

3. Weight enumerators of the linear codes CDi

In this section, we present the weight distributions of linear codes CDi
for each i ∈ {0, 1} defined by (1), (2) and (1), (3), respectively. We start
with the weight distributions of the linear codes CDi for each i ∈ {0, 1}
because we can obtain the complete weight enumerators of CDi for each
i ∈ {0, 1} from their the weight distributions of CDi for each i ∈ {0, 1}.
We explain the details in Section 4. Clearly, from Lemma 2.3, linear
codes CDi have the length for each i ∈ {0, 1}

|Di| =

{
p−1
2 (pm−1 + (−1)

m(p−1)
4 p

m−2
2 ), if m is even,

p−1
2 (pm−1 + (−1)i(−1)

(p−1)
2 (−1)

(p−1)(m+1)
4 p

m−1
2 ), if m is odd.

For a codeword c(a) of CDi for each i ∈ {0, 1}, let N0,i := N0,i(a) be
the number of components Trm(ax) of c(a) which are equal to 0. By the
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orthogonal property of additive characters, we have for each i ∈ {0, 1}

N0,i =
∑

c∈C(2,p)
i

∑
x∈Fq

(
1

p

∑
y∈Fp

ζy(Tr(x
2)−c)

p

)(
1

p

∑
z∈Fp

ζzTr(ax)p

)

=
1

p2

∑
c∈C(2,p)

i

∑
x∈Fq

(
1 +

∑
y∈F∗p

ζy(Tr(x
2)−c)

p

)(
1 +

∑
z∈F∗p

ζzTr(ax)p

)

=
pm(p− 1)

2p2
+

1

p2
(Ω1,i + Ω2,i + Ω3,i),

where

Ω1,i =
∑

c∈C(2,p)
i

∑
y∈F∗p

ζ−ycp

∑
x∈Fq

ζTr(yx
2)

p ,

Ω2,i =
∑

c∈C(2,p)
i

∑
z∈F∗p

∑
x∈Fq

ζTr(zax)p ,

and

Ω3,i =
∑

c∈C(2,p)
i

∑
y,z∈F∗p

ζ−ycp

∑
x∈Fq

ζTr(yx
2+zax)

p .

First of all, we easily compute Ω1,i for each i ∈ {0, 1}.

Ω1,i =
∑

c∈C(2,p)
0

∑
y∈F∗p

ζ−ycp

∑
x∈Fq

ζTr(yx
2)

p =

{
−p−1

2 G(η), if m is even,
p−1
2 (−1)i(−1)

p−1
2 G(η)G(ηp), if m is odd.

The last equality follows from Lemma 2.2. For each i ∈ {0, 1},

Ω2,i =
∑

c∈C(2,p)
i

∑
z∈F∗p

∑
x∈Fq

ζTr(zax)p = 0

Therefore, we need to compute Ω3,i for each i ∈ {0, 1}.

Lemma 3.1. For i ∈ {0, 1},
(1) If m is even, then

Ω3,i =

{
− (p−1)2

2 G(η), if Tr(a2) = 0,
p−1
2

(
(−1)iG(η)G(ηp)

2ηp(Tr(a2)) +G(η)
)
, if Tr(a2) 6= 0.

(2) If m is odd, then

Ω3,i =

{
(p−1)2

2 (−1)i(−1)
p−1
2 G(η)G(ηp), if Tr(a2) = 0,

−p−1
2

(
G(η)G(ηp)ηp(−Tr(a2)) + (−1)i(−1)

p−1
2 G(η)G(ηp)

)
, if Tr(a2) 6= 0.
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Proof. By Lemma 2.2, we have

Ω3,i =
∑

c∈C(2,p)
i

∑
y∈F∗p

ζ−ycp

∑
z∈F∗p

ζ−z
2(4y)−1Tr(a2)

p η(y)G(η).(3.1)

Because the case of even m is similar, we only consider the case of odd
m. If Tr(a2) = 0, then from (4) we have

Ω3,i =
(p− 1)2

2
G(η)G(ηp)ηp(−c).

If Tr(a2) 6= 0, then it follows from (3) and Lemma 2.2 that

Ω3,i = G(η)
∑

c∈C(2,p)
i

∑
y∈F∗p

ζ−ycp ηp(y)

(∑
z∈F∗p

ζ−z
2(4y)−1Tr(a2)

p − 1

)

= G(η)
∑

c∈C(2,p)
i

∑
y∈F∗p

ζ−ycp ηp(y)
(
ηp(−(4y)−1Tr(a2))G(ηp)− 1

)
= G(η)G(ηp)ηp(−Tr(a2))

∑
c∈C(2,p)

i

∑
y∈F∗p

ζ−ycp −
∑

c∈C(2,p)
i

G(η)
∑
y∈F∗p

ζ−ycp ηp(y)

=
(p− 1)

2

(
−G(η)G(ηp)ηp(−Tr(a2))−G(η)G(ηp)ηp(−c)

)
.

This completes the proof.

Theorem 3.2. Let m be even, the code CD0 and CD1 are defined in

(1), (2) and (1) (3), then the code CD0 and CD1 are an [p−12 (pm−1 +

(−1)
m(p−1)

4 p
m−2

2 ),m] two-weight linear code with the weight distribution
in Table 1.

Weight Frequency

0 1
p−1
2 (pm−1 − pm−2) 1

2

(
pm + pm−1 − (−1)

m(p−1)
4 (p− 1)p

m−2
2

)
− 1

p−1
2 (pm−1 − pm−2 + 2(−1)

m(p−1)
4 p

m−2
2 ) p−1

2

(
pm−1 + (−1)

m(p−1)
4 p

m−2
2

)
Table 1. The weight distribution of CD0 and CD1 for
even m

Theorem 3.3. Let m be odd and the code CD0 be defined in (1) and

(2), then the code CD0 is an [ (p−1)2 (pm−1+(−1)
(p−1)

2 (−1)
(p−1)(m+1)

4 p
m−1

2 ),m]
three-weight linear code with the weight distribution in Table 2.
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Weight Frequency

0 1
p−1
2 (pm−1 − pm−2) pm−1 − 1

p−1
2

(
pm−1 − pm−2 + (−1)

(m+1)(p−1)
4 p

m−3
2

(
(−1)

p−1
2 p+ 1

)) p−1
2 (pm−1 + (−1)

(m+1)(p−1)
4 p

m−1
2 )

p−1
2

(
pm−1 − pm−2 + (−1)

(m+1)(p−1)
4 p

m−3
2

(
(−1)

p−1
2 p− 1

)) p−1
2 (pm−1 − (−1)

(m+1)(p−1)
4 p

m−1
2 )

Table 2. The weight distribution of CD0 for odd m

Theorem 3.4. Let m be odd and the code CD1 be defined in (1) and

(3), then the code CD1 is an [ (p−1)2 (pm−1−(−1)
(p−1)

2 (−1)
(p−1)(m+1)

4 p
m−1

2 ),m]
three-weight linear code with the weight distribution in Table 3.

Weight Frequency

0 1
p−1
2 (pm−1 − pm−2) pm−1 − 1

p−1
2

(
pm−1 − pm−2 − (−1)

(m+1)(p−1)
4 p

m−3
2

(
(−1)

p−1
2 p− 1

)) p−1
2 (pm−1 + (−1)

(m+1)(p−1)
4 p

m−1
2 )

p−1
2

(
pm−1 − pm−2 − (−1)

(m+1)(p−1)
4 p

m−3
2

(
(−1)

p−1
2 p+ 1

)) p−1
2 (pm−1 − (−1)

(m+1)(p−1)
4 p

m−1
2 )

Table 3. The weight distribution of CD1 for odd m

Proof. Since the proofs are similar, we are going to prove theorems

3.1, 3.2 and 3.3 together. Recall that N0,i = pm(p−1)
2p2

+ 1
p2

(Ω1,i + Ω2,i +

Ω3,i) for each i ∈ {0, 1}. First of all, we employ Lemma 3.1 to compute
N0,0. The case of even m can be proved in the same way as the case of
odd m. Suppose that m is odd. If Tr(a2) = 0, then we obtain

N0,0 =
pm(p− 1)

2p2
+

(p− 1)

2p2

(
G(η)G(ηp)ηp(−1) + (p− 1)G(η)G(ηp)ηp(−1)

)
=

(p− 1)

2p2

(
pm + pG(η)G(ηp)ηp(−1)

)
.

If Tr(a2) 6= 0, then we obtain

N0,0 =
pm(p− 1)

2p2
+

(p− 1)

2p2

(
G(η)G(ηp)ηp(−1)−G(η)G(ηp)ηp(−1)−G(η)G(ηp)ηp(−Tr(a2))

)
=

{
(p−1)
2p2

(
pm −G(η)G(ηp)

)
, if ηp(−Tr(a2)) = 1,

(p−1)
2p2

(
pm +G(η)G(ηp)

)
, if ηp(−Tr(a2)) = −1.
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Since the case of N0,1 for even m can be similarly calculated, we only
consider the case of odd m.
If Tr(a2) = 0, then we obtain

N0,1 =
pm(p− 1)

2p2
− (p− 1)

2p2
(
G(η)G(ηp)ηp(−1) + (p− 1)G(η)G(ηp)ηp(−1)

)
=

(p− 1)

2p2
(
pm − pG(η)G(ηp)ηp(−1)

)
.

If Tr(a2) 6= 0, then we obtain

N0,1 =
pm(p− 1)

2p2
+

(p− 1)

2p2

(
−G(η)G(ηp)ηp(−1) +G(η)G(ηp)ηp(−1)−G(η)G(ηp)ηp(−Tr(a2))

)
=

{
(p−1)
2p2

(
pm −G(η)G(ηp)

)
, if ηp(−Tr(a2)) = 1,

(p−1)
2p2

(
pm +G(η)G(ηp)

)
, if ηp(−Tr(a2)) = −1.

By Lemma 2.3, we immediately obtain the frequency of each weight.
Since the Hamming weight of c(a) is equal to WH(c(a)) = |Di| − N0,i

for each i ∈ {0, 1}, we get the desired results.

4. Complete weight enumerators of linear codes CDi

In this section, we investigate the complete weight enumerators of
linear codes CD0 defined by (1) and (2). Since the case of CD1 is similar,
we only consider the case of CD0 . For a codeword c(a) of CD0 and ρ ∈ F∗p,
let Nρ,0 := Nρ,0(a) be the number of components Tr(ax) of c(a) which
are equal to ρ. Then

Nρ,0 =
∑

c∈C(2,p)
0

∑
x∈Fq

(
1

p

∑
y∈Fp

ζy(Tr(x
2)−c)

p

)(
1

p

∑
z∈Fp

ζz(Tr(ax)−ρ)p

)

=
1

p2

∑
c∈C(2,p)

0

∑
x∈Fq

(
1 +

∑
y∈F∗p

ζy(Tr(x
2)−c)

p

)(
1 +

∑
z∈F∗p

ζz(Tr(ax)−ρ)p

)

=
pm(p− 1)

2p2
+

1

p2
(Ω
′
1 + Ω

′
2 + Ω

′
3),
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where

Ω
′
1,0 =

∑
c∈C(2,p)

0

∑
y∈F∗p

ζ−ycp

∑
x∈Fq

ζTr(yx
2)

p ,

Ω
′
2,0 =

∑
c∈C(2,p)

0

∑
z∈F∗p

∑
x∈Fq

ζTr(zax)p ,

and

Ω
′
3,0 =

∑
c∈C(2,p)

0

∑
y∈F∗p

ζ−ycp

∑
z∈F∗p

ζ−zρp

∑
x∈Fq

ζTr(yx
2+zax)

p .

Now, we show that Nρ,0 of CD0 is independent of ρ ∈ F∗p. Then, we
easily obtain the complete weight enumerators of the linear codes CD0 .

We easily check that both Ω
′
1,0 and Ω

′
2,0 are independent of ρ ∈ F∗p.

Thus, we only focus on Ω
′
3,0.

Ω
′
3,0 =

∑
c∈C(2,p)

0

∑
y∈F∗p

ζ−ycp

∑
z∈F∗p

ζ−zρp

∑
x∈Fq

ζTr(yx
2+zax)

p

=
∑

c∈C(2,p)
0

∑
y∈F∗p

ζ−ycp

∑
z∈F∗p

ζ−zρp

∑
x∈Fq

ζ−z
2(4y)−1Tr(a2)

p η(y)G(η)

= G(η)
∑

c∈C(2,p)
0

∑
y∈F∗p

ζ−ycp

∑
z∈F∗p

ζ−Tr(a
2)(4y)−1z2−zρ

p .(4.1)

Suppose that m is even. If Tr(a2) = 0, then it follows from (5) that

Ω
′
3,0 = G(η)

∑
c∈C(2,p)

0

∑
y∈F∗p

ζ−ycp

∑
z∈F∗p

ζ−zρp = G(η)
∑

c∈C(2,p)
0

1.
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Thus, Ω
′
3,0 is independent of ρ ∈ F∗p.

If Tr(a2) 6= 0, then it follows from (5) and Lemma 2.2 that

Ω
′
3,0 = G(η)

∑
c∈C(2,p)

0

∑
y∈F∗p

ζ−ycp

(∑
z∈Fp

ζ−Tr(a
2)(4y)−1z2−ρz

p − 1

)

= G(η)
∑

c∈C(2,p)
0

∑
y∈F∗p

ζ−ycp

(∑
z∈Fp

ζρ
2(4Tr(a2))−1((4y)−1)−1

p ηp(−Tr(a2)(4y)−1)G(η)− 1

)

= G(η)G(ηp)
∑

c∈C(2,p)
0

∑
y∈F∗p

ζ
( ρ2

Tr(a2)
−c)y

p ηp(−Tr(a2)y) +
p− 1

2
G(η).

(4.2)

We only consider the case Tr(a2) is a square because the case Tr(a2)
is a non-square is similar. From (6) we obtain

Ω
′
3,0 = G(η)G(ηp)

( ∑
c∈C(2,p)

0

c 6= ρ2

Trm(a2)

∑
y∈F∗p

ζ
( ρ2

Tr(a2)
−c)y

p ηp(−Tr(a2)y) +
∑
y∈F∗p

ηp(−Tr(a2)y)

)

+
p− 1

2
G(η)

= G(η)G(ηp)
2
∑

c∈C(2,p)
0

c 6= ρ2

Tr(a2)

ηp(cTr(a2)− ρ2) +
p− 1

2
G(η).

Note that when c runs through C
(2,p)
0 , cρ2 also runs through C

(2,p)
0 .

Thus we have∑
c∈C(2,p)

0

c 6= ρ2

Tr(a2)

ηp(cTr(a2)− ρ2) =
∑

c∈C(2,p)
0

c 6= 1
Tr(a2)

ηp(cρ
2Tr(a2)− ρ2)

=
∑

c∈C(2,p)
0

c 6= 1
Tr(a2)

ηp(cTr(a2)− 1).

Therefore, Ω
′
3,0 is independent of ρ ∈ F∗p. For odd m, we can show that

Ω
′
3,0 is independent of ρ ∈ F∗p similarly. The case of Nρ,1 can be similarly
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checked. Therefore, Nρ,i are independent of ρ ∈ F∗p for i ∈ {0, 1}. Thus
for each i ∈ {0, 1},

Nρ,i =
(|D| −N0,i)

p− 1
for all ρ ∈ F∗p.

We easily get the complete weight distribution.

Example 4.1. (1) Let p = 5 and m = 3. Then q = 125 and n = 60.
The code CD0 is a [60, 3, 40] linear code. Its complete weight enumerator
is

z80 + 24z200 (z1z2z3z4)
10 + 40(z0z1z2z3z4)

12 + 60z80(z1z2z3z4)
13,

and its weight enumerator is

1 + 24x40 + 40x48 + 60x52,

which are checked by Magma.
Let p = 5 and m = 3. Then q = 125 and n = 40. The code CD1 is a

[40, 3, 28] linear code. Its complete weight enumerator is

z400 + 40z120 (z1z2z3z4)
7 + 60(z0z1z2z3z4)

8 + 24(z1z2z3z4)
10,

and its weight enumerator is

1 + 40x28 + 60x32 + 24x40,

which are checked by Magma.

(2) Let p = 5 and m = 4. Then q = 625 and n = 260. The code CD0

and CD1 is a [260, 4, 200] linear code. Its complete weight enumerator is

z80 + 260z400 (z1z2z3z4)
55 + 364z600 (z1z2z3z4)

50,

and its weight enumerator is

1 + 364x200 + 260x220,

which are checked by Magma.

5. Concluding remarks

In this section, we employ the complete weight enumerators of the
linear codes CDi for each i ∈ {0, 1} to get secret sharing schemes with
interesting access structures. And we construct a systematic authenti-
cation codes.
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(1) Secret Sharing Schemes from the linear codes CDi

Let wmin and wmax be the minimum and maximum nonzero weight
of linear code CDi , respectively. We recall that if wmin/wmax > p− 1/p,
then all nonzero codewords of code CD are minimal (see [23]). We easily
check that the linear codes in this paper are minimal for m ≥ 4 and can
be used to get secret sharing schemes with interesting access structures.

(2) Systematic Authentication codes

A systematic authentication codes is a four-tuple (S, T ,K, {Ek : k ∈
K}), where S is the source state space associated with a probability
distribution, T is the tag space, K is the key space, and Ek : S → T
is called an encoding rule. For more information, see [10, 11, 15] about
the authentication codes. We denote the maximum success probability
of the impersonation attack and the substitution attack by PI and PS ,
respectively. For the systematic authentication codes, there are two
lower bounds on PI and PS [10, 11]:

PI ≥
1

|T |
and PS ≥

1

|T |.
It is desired that PI and PS must be as small as possible.

We mention that the complete weight enumerators, presented by The-
orems 3.2, 3.3 and 3.4 can be applied to compute the deception proba-
bilities of certain authentication codes constructed from our linear codes
as in [10]. Moreover, if pm is large enough, then we have PI = 1

p and

PS ≈ 1
p for all authentication codes obtained from Theorems 3.2, 3.3 and

3.4. Therefore, these authentication codes are asymptotically optimal.
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