STABILITY OF A QUADRATIC-CUBIC-QUARTIC FUNCTIONAL EQUATION

Yang-Hi Lee

ABSTRACT. In this paper, we investigate the stability of a quadratic-cubic-quartic functional equation

$$f(x+ky) + f(x-ky) - k^2 f(x+y) - k^2 f(x-y)$$
$$-2(1-k^2)f(x) - \frac{k^2(k^2-1)}{6}(f(2y) + 2f(-y) - 6f(y)) = 0$$

by applying the direct method in the sense of Găvruta.

1. Introduction

In this paper, let V and W be real vector spaces, Y be a real Banach space and $k \in \mathbb{R} \setminus \{0, \pm 1\}$. For a given mapping $f: V \to W$ with f(0) = 0, we use the following abbreviations

$$f_o(x) := \frac{f(x) - f(-x)}{2}, \quad f_e(x) := \frac{f(x) + f(-x)}{2},$$

$$Df(x,y) := f(x+ky) + f(x-ky) - k^2 f(x+y) - k^2 f(x-y)$$

$$-2(1-k^2)f(x) - \frac{k^2(k^2-1)}{6}(f(2y) + 2f(-y) - 6f(y))$$

$$J_n f(x) := \frac{f_o(2^n x)}{8^n} + \frac{16f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 4^n}$$

$$-\frac{4f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 16^n},$$

$$J'_n f(x) := 8^n f_o\left(\frac{x}{2^n}\right) + \frac{4 \cdot 16^n - 4^n}{3} f_e\left(\frac{x}{2^n}\right)$$

$$-\frac{16^{n+1} - 4^{n+2}}{3} f_e\left(\frac{x}{2^{n+1}}\right)$$

Received July 23, 2019; Accepted December 21, 2019.

2010 Mathematics Subject Classification: Primary 39B82, 39B52.

 $\label{thm:condition} \mbox{Key words and phrases: generalized Hyers-Ulam stability, quadratic-cubic-quartic functional equation, quadratic-cubic-quartic mapping.}$

for all $x, y \in V$ and all $n \in \mathbb{N} \cup \{0\}$. Gordji et al. [3] proved the stability of the quadratic-cubic-quartic functional equation Df(x,y) = 0 for a fixed $k \in \mathbb{Z} \setminus \{0, \pm 1\}$. For the terminology "quadratic-cubic-quartic functional equation", refer to the papers [2, 3]. This author [5] proved the stability of the functional equation Df(x,y) = 0 for the case k = 2 by using the fixed point theory, and also showed the Hyers-Ulam-Rassias stability of the quadratic-cubic-quartic functional equation

$$f(x+ky) + f(x-ky) - k^2 f(x+y) - k^2 f(x-y) + 2(k^2-1)f(x) + (k^2+k^3)f(y) + (k^2-k^3)f(-y) - 2f(ky) = 0$$

[6]. In this paper, we will prove the stability of the functional equation Df(x,y)=0 in the sense of Găvruta [1] (See also [4, 7]). In other words, from the given mapping f that approximately satisfies the functional equation Df(x,y)=0, we will show that the mapping F, which is the solution of the functional equation Df(x,y)=0, can be constructed using the formula

$$F(x) = \lim_{n \to \infty} J_n f(x)$$

or

$$F(x) = \lim_{n \to \infty} J'_n f(x),$$

and we will prove that the mapping F is the unique solution of functional equation Df(x,y) = 0 near the mapping f.

2. Main theorems

The following lemma is needed to show the uniqueness of the solution mapping of the functional equation Df(x,y) = 0 satisfying a certain condition within the main theorem about the stability of the functional equation Df(x,y) = 0.

LEMMA 2.1. If a mapping $f: V \to W$ satisfies Df(x,y) = 0 for all $x,y \in V$, then the equalities

$$(2.1) f(x) = J_n f(x),$$

$$(2.2) f(x) = J_n' f(x)$$

hold for all $x \in V$ and all $n \in \mathbb{N} \cup \{0\}$.

Proof. Notice that if a mapping $f: V \to W$ satisfies Df(x,y) = 0 for all $x, y \in V$, then the equalities

$$f_e(4x) - 20f_e(2x) + 64f_e(x) = 0,$$

 $f_o(2x) - 8f_o(x) = 0$

can be obtained from the equalities

$$f(0) = \frac{2Df(0,0)}{k^2(k^2 - 1)},$$

$$(2.3) \qquad f_e(4x) - 20f_e(2x) + 64f_e(x) - 36f_e(0)$$

$$= \frac{12k^2Df_e(x,x) - 12(k^2 - 1)Df_e(0,x)}{k^2(k^2 - 1)}$$

$$- \frac{6Df_e(0,2x) - 12Df_e(kx,x)}{k^2(k^2 - 1)},$$

$$(2.4) \qquad f_o(2x) - 8f_o(x) = \frac{-6Df_o(0,x)}{k^2(k^2 - 1)}$$

for all $x \in V$. Therefore, the equality (2.1) can be derived from the equality

$$f(x) - \frac{f_o(2^n x)}{8^n} - \frac{16f_e(2^n x) + f_e(2^{n+1} x)}{12 \cdot 4^n} + \frac{4f_e(2^n x) - f_e(2^{n+1} x)}{12 \cdot 16^n}$$

$$= \sum_{i=0}^{n-1} \frac{2f_o(2^i x) - f_o(2^{i+1} x)}{8^{i+1}} + \sum_{i=0}^{n-1} \frac{64f_e(2^i x) - 20f_e(2^{i+1} x) + f_e(2^{i+2} x)}{12 \cdot 4^{i+1}}$$

$$+ \sum_{i=0}^{n-1} -\frac{64f_e(2^i x) - 20f_e(2^{i+1} x) + f_e(2^{i+2} x)}{12 \cdot 16^{i+1}}$$

for all $x \in V$ and $n \in \mathbb{N} \cup \{0\}$. The equality (2.2) can be easily obtained in a similar way.

In the following theorem, we can prove the generalized Hyers-Ulam stability of the functional equation Df(x,y) = 0 by using the direct method in the sense of Găvruta.

THEOREM 2.2. Let $f: V \to Y$ be a mapping for which there exists a function $\varphi: V^2 \to [0, \infty)$ such that the inequality

$$(2.5) ||Df(x,y)|| \le \varphi(x,y)$$

holds for all $x, y \in V$ and let f(0) = 0. If φ has the property

(2.6)
$$\sum_{n=0}^{\infty} \frac{\varphi(2^n x, 2^n y)}{4^n} < \infty$$

for all $x, y \in V$, then there exists a unique solution mapping $F: V \to Y$ of the functional equation Df(x,y) = 0 satisfying the inequality

$$||f(x) - F(x)|| \le \frac{1}{k^2|k^2 - 1|} \sum_{n=0}^{\infty} \left(\frac{6\varphi_e(0, 2^n x)}{8^{n+1}} + \frac{2k^2\varphi_e(2^n x, 2^n x)}{2 \cdot 4^{n+1}} + \frac{2|k^2 - 1|\varphi_e(0, 2^n x) + \varphi_e(0, 2^{n+1} x) + 2\varphi_e(2^n k x, 2^n x)}{2 \cdot 4^{n+1}} \right)$$

$$(2.7)$$

for all $x \in V$, where φ_e is the function defined by $\varphi_e(x,y) := \frac{\varphi(x,y) + \varphi(-x,-y)}{2}$. In particular, F is represented by the equality $F(x) = \lim_{n \to \infty} J_n f(x)$ for all $x \in V$.

Proof. From the equalities (2.3), (2.4) and (2.5), we have

$$||J_{n}f(x) - J_{n+1}f(x)||$$

$$= \left\| \frac{f_{o}(2^{n}x)}{8^{n}} - \frac{f_{o}(2^{n+1}x)}{8^{n+1}} + \left(\frac{1}{12 \cdot 4^{n+1}} - \frac{1}{12 \cdot 16^{n+1}} \right) \right\|$$

$$\times (64f_{e}(2^{n}x) - 20f_{e}(2^{n+1}x) + f_{e}(2^{n+2}x)) \|$$

$$= \left\| \frac{6Df_{o}(0, 2^{n}x)}{k^{2}(k^{2} - 1)8^{n+1}} \right\| + \left\| \frac{2k^{2}Df_{e}(2^{n}x, 2^{n}x)}{k^{2}(k^{2} - 1)2 \cdot 4^{n+1}} \right\|$$

$$+ \frac{-2(k^{2} - 1)Df_{e}(0, 2^{n}x) - Df_{e}(0, 2^{n+1}x) + 2Df_{e}(2^{n}kx, 2^{n}x)}{k^{2}(k^{2} - 1)2 \cdot 4^{n+1}} \|$$

$$\leq \frac{1}{k^{2}|k^{2} - 1|} \left(\frac{6\varphi_{e}(0, 2^{n}x)}{8^{n+1}} + \frac{2k^{2}\varphi_{e}(2^{n}x, 2^{n}x) + 2|k^{2} - 1|\varphi_{e}(0, 2^{n}x)}{2 \cdot 4^{n+1}} \right)$$

$$(2.8) + \frac{\varphi_{e}(0, 2^{n+1}x) + 2\varphi_{e}(2^{n}kx, 2^{n}x)}{2 \cdot 4^{n+1}} \right)$$

for all $x \in V$. It follows from (2.8) that

$$||J_{n}f(x)-J_{n+m}f(x)||$$

$$\leq \sum_{i=n}^{n+m-1} ||J_{i}f(x)-J_{i+1}f(x)||$$

$$\leq \frac{1}{k^{2}|k^{2}-1|} \sum_{i=n}^{n+m-1} \left(\frac{6\varphi_{e}(0,2^{i}x)}{8^{i+1}} + \frac{2k^{2}\varphi_{e}(2^{i}x,2^{i}x)}{2\cdot 4^{i+1}} + \frac{2|k^{2}-1|\varphi_{e}(0,2^{i}x)+\varphi_{e}(0,2^{i+1}x)+2\varphi_{e}(2^{i}kx,2^{i}x)}{2\cdot 4^{i+1}}\right)$$

$$(2.9) \qquad + \frac{2|k^{2}-1|\varphi_{e}(0,2^{i}x)+\varphi_{e}(0,2^{i+1}x)+2\varphi_{e}(2^{i}kx,2^{i}x)}{2\cdot 4^{i+1}}\right)$$

for all $x \in V$. In view of (2.6) and (2.9), the sequence $\{J_n f(x)\}$ is a Cauchy sequence for all $x \in V$. Since Y is complete, the sequence $\{J_n f(x)\}$ converges for all $x \in V$. Hence, we can define a mapping $F: V \to Y$ by

$$F(x) := \lim_{n \to \infty} J_n f(x)$$

for all $x \in V$. Moreover, letting n = 0 and passing the limit $m \to \infty$ in (2.9) we get the inequality (2.7). With the definition of F, we easily get the equality DF(x,y) = 0 from the relations

$$\begin{split} &\|DF(x,y)\| \\ &= \left\| \frac{Df_o(2^n x, 2^n y)}{8^n} + \frac{16Df_e(2^n x, 2^n y) - f_e(2^{n+1} x, 2^{n+1} y)}{12 \cdot 4^n} \right. \\ &- \frac{4Df_e(2^n x, 2^n y) - f_e(2^{n+1} x, 2^{n+1} y)}{12 \cdot 16^n} \right\| \\ &\leq \left\| \frac{Df_o(2^n x, 2^n y)}{8^n} \right\| + \left\| \frac{16Df_e(2^n x, 2^n y)}{12 \cdot 4^n} \right\| + \left\| \frac{Df_e(2^{n+1} x, 2^{n+1} y)}{12 \cdot 4^n} \right\| \\ &\leq \frac{\varphi_e(2^n x, 2^n y)}{8^n} + \frac{16\varphi_e(2^n x, 2^n y)}{12 \cdot 4^n} + \frac{\varphi_e(2^{n+1} x, 2^{n+1} y)}{12 \cdot 4^n} \right\| \\ &\Rightarrow 0 \text{ as } n \Rightarrow \infty \end{split}$$

To prove the uniqueness of F, let $F': V \to Y$ be another mapping satisfying the equality DF'(x,y) = 0 and the inequality (2.7). Instead of the condition (2.7), it is sufficient to show that there is a unique mapping F satisfying the simpler condition

$$||f(x) - F(x)|| \le \sum_{i=0}^{\infty} \frac{\Phi(2^{i}x)}{2 \cdot 4^{i+1}}$$

for all $x \in V$, where

$$\Phi(2^{i}x) := \frac{2k^{2}\varphi_{e}(2^{i}x, 2^{i}x) + 2(k^{2} + 4)\varphi_{e}(0, 2^{i}x) + \varphi_{e}(0, 2^{i+1}x) + 2\varphi_{e}(2^{i}kx, 2^{i}x)}{k^{2}|k^{2} - 1|}$$

By (2.1), the equality $F'(x) = J_n F'(x)$ holds for all $n \in \mathbb{N}$. Therefore, we have

$$\begin{aligned} &\|J_{n}f(x) - F'(x)\| \\ &= \|J_{n}f(x) - J_{n}F'(x)\| \\ &\leq \left\| \frac{f_{o}(2^{n}x)}{8^{n}} + \frac{16f_{e}(2^{n}x) - f_{e}(2^{n+1}x)}{12 \cdot 4^{n}} - \frac{4f_{e}(2^{n}x) - f_{e}(2^{n+1}x)}{12 \cdot 16^{n}} - \frac{F'_{o}(2^{n}x)}{8^{n}} - \frac{16F'_{e}(2^{n}x) - F'_{e}(2^{n+1}x)}{12 \cdot 4^{n}} + \frac{4F'_{e}(2^{n}x) - F'_{e}(2^{n+1}x)}{12 \cdot 16^{n}} \right\| \\ &\leq \left\| \frac{f_{o}(2^{n}x)}{8^{n}} - \frac{F'_{o}(2^{n}x)}{8^{n}} \right\| + \left(\frac{16}{12 \cdot 4^{n}} - \frac{4}{12 \cdot 16^{n}} \right) \|f_{e}(2^{n}x) - F'_{e}(2^{n}x)\| \\ &+ \left(\frac{1}{12 \cdot 4^{n}} - \frac{1}{12 \cdot 16^{n}} \right) \|f_{e}(2^{n+1}x) - F'_{e}(2^{n+1}x)\| \\ &\leq \sum_{i=0}^{\infty} \frac{\Phi(2^{i+n}x)}{2 \cdot 4^{i+1} \cdot 8^{n}} + \frac{4}{3} \sum_{i=0}^{\infty} \frac{\Phi(2^{i+n}x)}{2 \cdot 4^{i+1} \cdot 4^{n}} + \frac{4}{3} \sum_{i=0}^{\infty} \frac{\Phi(2^{i+n}x)}{2 \cdot 4^{i+1} \cdot 4^{n}} \\ &\leq \sum_{i=n}^{\infty} \frac{\Phi(2^{i}x)}{2 \cdot 4^{i+1}} + \sum_{i=n}^{\infty} \frac{\Phi(2^{i}x)}{4^{i+1}} + \sum_{i=n+1}^{\infty} \frac{\Phi(2^{i}x)}{4^{i+1}} \end{aligned}$$

for all $x \in V$ and all $n \in \mathbb{N}$. Taking the limit in the above inequality as $n \to \infty$, we conclude that $F'(x) = \lim_{n \to \infty} J_n f(x)$ for all $x \in V$. This means that the equality F(x) = F'(x) holds for all $x \in V$.

COROLLARY 2.3. Let $p \in (0,2)$ and X be a real normed space. If $f: X \to Y$ is a mapping such that

$$||Df(x,y)|| \le \theta(||x||^p + ||y||^p)$$

for all $x, y \in X$, then there exists a unique solution mapping $F: X \to Y$ of the functional equation Df(x,y) = 0 satisfying the inequality

$$||f(x) - F(x)|| \le \frac{6}{k^2 |k^2 - 1|(8 - 2^p)} + \frac{4k^2 + 2|k^2 - 1| + 2 + 2|k|^p + 2^p}{2k^2 |k^2 - 1|(4 - 2^p)}$$

for all $x \in X$.

Proof. If we put $\varphi = \theta(||x||^p + ||y||^p)$ in Theorem 2.2, the inequality (2.11) is easily obtained from the inequality (2.7).

THEOREM 2.4. Let $f: V \to Y$ be a mapping for which there exists a function $\varphi: V^2 \to [0, \infty)$ such that the inequality (2.5) holds for all $x, y \in V$ and let f(0) = 0. If φ has the property

(2.12)
$$\sum_{n=0}^{\infty} 16^n \varphi\left(\frac{x}{2^n}, \frac{y}{2^n}\right) < \infty$$

for all $x, y \in V$, then there exists a unique solution mapping $F: V \to Y$ of the functional equation Df(x,y) = 0 satisfying the inequality

(2.13)
$$||f(x) - F(x)|| \le \sum_{n=0}^{\infty} \Psi_n(x)$$

for all $x \in V$, where

$$\begin{split} \Psi_n(x) := & \frac{6 \cdot 8^n}{k^2 |k^2 - 1|} \varphi_e\left(0, \frac{x}{2^{n+1}}\right) + \frac{8 \cdot 16^n}{k^2 |k^2 - 1|} \bigg(2k^2 \varphi_e\left(\frac{x}{2^{n+2}}, \frac{x}{2^{n+2}}\right) \\ &+ 2|k^2 - 1| \varphi_e\left(0, \frac{x}{2^{n+2}}\right) + \varphi_e\left(0, \frac{x}{2^{n+1}}\right) + 2\varphi_e\left(\frac{kx}{2^{n+2}}, \frac{x}{2^{n+2}}\right) \bigg). \end{split}$$

In particular, F is represented by $F(x) = \lim_{n \to \infty} J'_n f(x)$ for all $x \in V$.

Proof. From the equalities (2.3), (2.4) and (2.5), we have

$$||J'_{n}f(x) - J'_{n+1}f(x)||$$

$$\leq \left\| 8^{n} \left(f_{o} \left(\frac{x}{2^{n}} \right) - 8f_{o} \left(\frac{x}{2^{n+1}} \right) \right) + \frac{(4 \cdot 16^{n} - 4^{n})}{3} \left(f_{e} \left(\frac{x}{2^{n}} \right) - 20f_{e} \left(\frac{x}{2^{n+1}} \right) + 64f_{e} \left(\frac{x}{2^{n+2}} \right) \right) \right\|$$

$$\leq \frac{6 \cdot 8^{n}}{k^{2} |k^{2} - 1|} \left\| Df_{o} \left(0, \frac{x}{2^{n+1}} \right) \right\|$$

$$+ \frac{4 \cdot 16^{n}}{3k^{2} |k^{2} - 1|} \left\| - 6Df_{e} \left(0, \frac{x}{2^{n+1}} \right) + 12Df_{e} \left(\frac{kx}{2^{n+2}}, \frac{x}{2^{n+2}} \right) + 12k^{2}Df_{e} \left(\frac{x}{2^{n+2}}, \frac{x}{2^{n+2}} \right) - 12(k^{2} - 1)Df_{e} \left(0, \frac{x}{2^{n+2}} \right) \right\|$$

$$(2.14) \leq \Psi_{n}(x)$$

for all $x \in V$. It follows from (2.14) that

(2.15)
$$||J'_n f(x) - J'_{n+m} f(x)|| \le \sum_{i=n}^{n+m-1} \Psi_i(x)$$

for all $x \in V$. In view of (2.12) and (2.15), the sequence $\{J'_nf(x)\}$ is a Cauchy sequence for all $x \in V$. Since Y is complete, the sequence $\{J'_nf(x)\}$ converges for all $x \in V$. Hence, we can define a mapping $F: V \to Y$ by $F(x) := \lim_{n \to \infty} J'_nf(x)$ for all $x \in V$. Moreover, letting n = 0 and passing the limit $m \to \infty$ in (2.15) we get the inequality (2.13). From the definition of F, we easily get

$$||DF(x,y)|| = ||8^{n}Df_{o}\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right) + \frac{4 \cdot 16^{n} - 4^{n}}{3}Df_{e}\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)$$

$$- \frac{16^{n+1} - 4^{n+2}}{3}Df_{e}\left(\frac{x}{2^{n+1}}, \frac{y}{2^{n+1}}\right)||$$

$$\leq ||16^{n}Df_{o}\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)|| + ||16^{n}Df_{e}\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)||$$

$$+ ||\frac{16^{n+1}}{3}Df_{e}\left(\frac{x}{2^{n+1}}, \frac{y}{2^{n+1}}\right)||$$

$$\leq 16^{n+1}\varphi_{e}\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right) + 16^{n+1}\varphi_{e}\left(\frac{x}{2^{n+1}}, \frac{y}{2^{n+1}}\right)$$

$$\to 0 \text{ as } n \to \infty,$$

which means that DF(x,y) = 0 for all $x, y \in V$.

To prove the uniqueness of F, let $F':V\to Y$ be another mapping satisfying DF'(x,y)=0 and (2.13). Instead of the condition (2.13), it is sufficient to show that there is a unique mapping satisfying the simpler condition

$$||f(x) - F(x)|| \le \sum_{i=0}^{\infty} 16^{i} \Phi\left(\frac{x}{2^{i}}\right)$$

for all $x \in V$, where

$$\begin{split} \Phi\left(\frac{x}{2^{i}}\right) := & \frac{16}{k^{2}|k^{2}-1|} \bigg(2k^{2}\varphi_{e}\left(\frac{x}{2^{i+2}},\frac{x}{2^{i+2}}\right) \\ & + 2|k^{2}-1|\varphi_{e}\left(0,\frac{x}{2^{i+2}}\right) + 2\varphi_{e}\left(0,\frac{x}{2^{i+1}}\right) + 2\varphi_{e}\left(\frac{kx}{2^{i+2}},\frac{x}{2^{i+2}}\right)\bigg). \end{split}$$

By (2.2), the equality $F'(x) = J'_n F'(x)$ holds for all $x \in V$ and all $n \in \mathbb{N}$. Therefore, we have

$$\begin{aligned} & \|J'_{n}f(x) - F'(x)\| \\ & = \|J'_{n}f(x) - J'_{n}F'(x)\| \\ & \leq \left\| 8^{n}f_{o}\left(\frac{x}{2^{n}}\right) + \frac{4 \cdot 16^{n} - 4^{n}}{3}f_{e}\left(\frac{x}{2^{n}}\right) - \frac{16^{n+1} - 4^{n+2}}{3}f_{e}\left(\frac{x}{2^{n+1}}\right) \\ & - 8^{n}F'_{o}\left(\frac{x}{2^{n}}\right) - \frac{4 \cdot 16^{n} - 4^{n}}{3}F'_{e}\left(\frac{x}{2^{n}}\right) + \frac{16^{n+1} - 4^{n+2}}{3}F'_{e}\left(\frac{x}{2^{n+1}}\right) \right\| \\ & \leq 8^{n} \left\| f_{o}\left(\frac{x}{2^{n}}\right) - F'_{o}\left(\frac{x}{2^{n}}\right) \right\| + 16^{n+1} \left\| f_{o}\left(\frac{x}{2^{n+1}}\right) - F'_{o}\left(\frac{x}{2^{n+1}}\right) \right\| \\ & + 16^{n+1} \left\| f_{e}\left(\frac{x}{2^{n}}\right) - F'_{e}\left(\frac{x}{2^{n}}\right) \right\| \\ & \leq \sum_{i=n}^{\infty} 16^{i}\Phi\left(\frac{x}{2^{i}}\right) + \sum_{i=n+1}^{\infty} 16^{i}\Phi\left(\frac{x}{2^{i}}\right) + \sum_{i=n}^{\infty} 16^{i+1}\Phi\left(\frac{x}{2^{i}}\right) \end{aligned}$$

for all $x \in V$ and all $n \in \mathbb{N}$. Taking the limit in the above inequality as $n \to \infty$, we can conclude that $F'(x) = \lim_{n \to \infty} J'_n f(x)$ for all $x \in V$. This means that F(x) = F'(x) for all $x \in V$.

COROLLARY 2.5. Let p > 4 be a real number and X be a real normed space. If $f: X \to Y$ is a mapping satisfying the inequality (2.10) for all $x, y \in X$, then there exists a unique solution mapping $F: X \to Y$ of the functional equation Df(x, y) = 0 satisfying the inequality

$$||f(x) - F(x)|| \le \frac{6}{k^2|k^2 - 1|(2^p - 8)} + \frac{8(4k^2 + 2|k^2 - 1| + 2|k|^p + 2 + 2^p)}{k^2|k^2 - 1|(2^p - 16)}$$

for all $x \in X$.

References

- P. Găvruta and P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436.
- [2] M. E. Gordji, S. Kaboli, and S. Zolfaghari, Stability of a mixed type quadratic, cubic and quartic functional equation, arxiv: 0812.2939v1 Math FA, 15 Dec 2008.
- [3] M. E. Gordji, H. Khodaei, and R. Khodabakhsh, General quartic-cubic-quadratic functional equation in non-Archimedean normed spaces, U.P.B. Sci. Bull. Series A, 72 (2010), no. 3, 69–84.

- [4] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A., 27 (1941), 222–224.
- [5] Y.-H. Lee, A fixed point approach to the stability of a quadratic-cubic-quartic functional equation, East Asian Math. J., **35** (2019), 559–568.
- [6] Y.-H. Lee, Hyers-Ulam-Rassias stability of a quadratic-cubic-quartic functional equation, Korea J. Math., (2019), submitted.
- [7] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., **72** (1978), 297–300.

Department of Mathematics Education Gongju National University of Education Gongju 32553, Korea lyhmzi@gjue.gjue.ac.kr